Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория вероятности(шпоры).docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
156.6 Кб
Скачать

4. Вероятностное пространство (ω, s, р). Аксиомы теории вероятностей и следствия из них. Описание конечного вероятностного пространства в аксиоматике Колмогорова.

Вероятностное пространство — это тройка , где:

  •  — это множество объектов , называемых элементарными исходами эксперимента. На это множество не накладывается никаких условий, оно может быть совершенно произвольным. При задании вероятностной модели для конкретного случайного эксперимента множество необходимо определять таким образом, чтобы в любой реализации опыта происходил один и только один элементарный исход. Элементарный исход содержит в себе всю возможную информацию о результате случайного опыта. С формальной математической точки зрения «произвести случайный опыт» означает в точности указать один элементарный исход , который произошел в данной реализации опыта.

  •  — это некоторая зафиксированная система подмножеств , которые будут называться (случайными) событиями. Если элементарный исход, произошедший в результате реализации случайного опыта, входит в событие , то говорят, что в данной реализации событие произошло, иначе говорят, что событие не произошло. Совокупность событий должна быть сигма-алгеброй, то есть удовлетворять следующим свойствам:

    • Пустое множество должно быть событием, то есть принадлежать . Это событие, которое существует в любом вероятностном пространстве, называется невозможным, поскольку оно никогда не происходит.

    • Все множество также должно быть событием: . Это событие называется достоверным, так как происходит при любой реализации случайного опыта.

    • Совокупность событий должна образовывать алгебру, то есть быть замкнутой относительно основных теоретико-множественных операций, выполняемых над конечным числом событий. Если и , тогда должно быть , , . Операции над событиями имеют очевидный содержательный смысл.

    • В дополнение к указанным свойствам, система должна быть замкнута относительно операций над событиями, выполняемых в счетном числе (свойство сигма-алгебры). Если , тогда должно быть и .

  •  — это числовая функция, которая определена на и ставит в соответствие каждому событию число , которое называется вероятностью события . Эта функция должна быть конечной сигма-аддитивной мерой, равной 1 на всем пространстве, то есть обладать свойствами:

    • для любого

    • ,

    • Если и  — события, причем , тогда (свойство аддитивности).

    • Если , причем Если для любых Если , тогда должно быть (свойство сигма-аддитивности).

Заметим, что последнее свойство сигма-аддитивности меры эквивалентно (при условии выполнения всех прочих свойств, в том числе конечной аддитивности) любому из следующих свойств непрерывности меры:

  • Если и , тогда .

  • Если и , тогда .

  • Если , и , тогда .

Пусть — множество элементов , которые называются элементарными событиями, а — множество подмножеств , называемых случайными событиями (или просто — событиями), а — пространством элементарных событий.

  • Аксиома I (алгебра событий). является алгеброй событий.

  • Аксиома II (существование вероятности событий). Каждому событию x из поставлено в соответствие неотрицательное действительное число , которое называется вероятностью события x.

  • Аксиома III (нормировка вероятности). .

  • Аксиома IV (аддитивность вероятности). Если события x и y не пересекаются, то

.

Совокупность объектов , удовлетворяющая аксиомам I—IV, называется вероятностным пространством (у Колмогорова: поле вероятностей).

Система аксиом I—IV непротиворечива. Это показывает следующий пример: состоит из единственного элемента , — из и множества невозможных событий (пустого множества) , при этом положено . Однако эта система аксиом не является полной: в разных вопросах теории вероятностей рассматриваются различные вероятностные пространства.