
- •Скорость движения точки по прямой. Мгновенная скорость. Нахождение координаты по известной зависимости скорости по времени.
- •Мгновенная скорость ( )
- •Закон инерции. Инерциальные системы отсчета, система Коперника. Второй закон Ньютона. Третий закон и область его применимости.
- •Закон сохранения импульса в изолированной системе из двух материальных точек. Теорема о движении центра масс.
- •Закон сохранения момента импульса
- •Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Связь между динамическими и кинематическими характеристиками вращения твердого тела.
- •Гармонический осциллятор. Превращение энергии при колебаниях осциллятора. Гармонический осциллятор
- •Примеры гармонических осцилляторов (физический маятник, математический маятник, крутильный маятник)
- •Основные законы гидростатики. Барометрическая формула. Распределение Больцмана.
- •Поверхностное натяжение и лапласово давление. Капиллярный эффект, когезия и адгезия.
- •Понятие потока жидкости (газа) и уравнение непрерывности. Вывод уравнения Бернулли.
- •Анализ уравнения Бернулли
- •Преобразование Галилея. Механический принцип относительности. Постулаты специальной (частной теории) относительности. Преобразование Лоренца и следствия из них.
- •Основные положения молекулярно- кинетической теории. Вывод основного уравнения кинетической теории газов.
- •Вывод основных газовых законов. Уравнение состояния идеальных газов. Универсальная газовая постоянная.
- •Распределение скоростей молекул по Максвеллу. Наивероятнейшая скорость.
- •Теплоемкость, закон Джоуля, уравнение Роберта Майера. Способы измерения теплоемкостей твердых и жидких тел.
- •Обратимые и необратимые процессы. Равновесные и неравновесные процессы. Изопроцессы в газах. Круговые процессы или циклы.
- •Третий закон (третье начало) термодинамики– pабсолютный нуль температуры недостижим. К абсолютному нулю можно лишь асимптотически приближаться, никогда не достигая его.
- •Испарение и кипение. Плавление и кристаллизация.
- •Свойства электрического заряда. Закон Кулона , системы единиц. Электрическое поле. Напряженность электрического поля.
- •Вычисление напряженности поля систем зарядов. Объёмная, поверхностная и линейная плотность заряда.
- •Понятие потока вектора. Теорема Гаусса. Применение теоремы Гаусса для расчета симметрических полей.
- •Дивергенция, циркуляция, ротор вектора, их свойства. Теорема Стокса. Условие потенциальности. Теорема Остроградского- Гаусса. Теорема Гаусса в дифференциальной форме.
- •Свойства, непосредственно получаемые из обычных правил дифференцирования
- •[Править] Теорема Стокса
- •Граничные условия Еn и Еt.
- •Связь между потенциалом и напряженностью электрического поля.
- •Эквипотенциальные поверхности. Вычисление потенциала в поле заданных зарядов (точечный заряд, система точечных зарядов, непрерывно распределенный заряд).
- •Заряды и поле в проводниках ,электростатическая индукция. Общая задача электростатики проводников. Уравнение Пуассона, уравнение Лапласа.
- •Электроемкость, диэлектрическая проницаемость. Конденсаторы. Энергия электрического поля
- •Поляризация диэлектриков. Электрический диполь. Поляризованность.
- •Уравнение электростатики для диэлектриков. Вектор электрической индукции.
- •Источники тока. Характеристика электрического тока. Сторонние силы. Э.Д.С. Напряжение.
- •Эмиссия электронов. Термоэлектронная эмиссия. Электронные лампы. Ламповый выпрямитель. Сеточная характеристика лампы. Ток в газах.
- •Полупроводники. Собственная проводимость полупроводников. Примесная проводимость полупроводников. P- n – переход. Запирающий слой. Вольт- амперная характеристика полупроводникового диода.
Понятие потока жидкости (газа) и уравнение непрерывности. Вывод уравнения Бернулли.
В гидравлике потоком считают такое движение массы, когда эта масса ограничена:
1) твердыми поверхностями;
2) поверхностями, которые разделяют разные жидкости;
3) свободными поверхностями.
В зависимости от того, какого рода поверхностями или их сочетаниями ограничена движущаяся жидкость, различают следующие виды потоков:
1) безнапорные, когда поток ограничен сочетанием твердой и свободной поверхностей, например, река, канал, труба с неполным сечением;
2) напорные, например, труба с полным сечением;
3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой.
Живое сечение и гидравлический радиус потока. Уравнение неразрывности в гидравлической форме
Уравнение Громеки подходит для описания движения жидкости, если компоненты функции движения содержат какуююто вихревую величину. Например, эта вихревая величина содержится в компонентах ωx, ωy,ωz угловой скорости w.
Условием того, что движение является установившимся, является отсутствие ускорения, то есть условие равенства нулю частных производных от всех компонентов скорости:
Если теперь сложить
то получим
Если проецировать перемещение на бесконечно малую величину dl на координатные оси, то получим:
dx = Uxdt; dy = Uy dt; dz = Uzdt. (3)
Теперь помножим каждое уравнение (3) соответственно на dx, dy, dz, и сложим их:
Предположив, что правая часть равна нулю, а это возможно, если вторая или третья строки равны нулю, получим:
Нами получено уравнение Бернулли
Анализ уравнения Бернулли
это уравнение есть не что иное, как уравнение линии тока при установившемся движении.
Отсюда следуют выводы:
1) если движение установившееся, то первая и третья строки в уравнении Бернулли пропорциональны.
2) пропорциональны строки 1 и 2, т. е.
Уравнение (2) является уравнением вихревой линии. Выводы из (2) аналогичны выводам из (1), только линии тока заменяют вихревые линии. Одним словом, в этом случае условие (2) выполняется для вихревых линий;
3) пропорциональны соответствующие члены строк 2 и 3, т. е.
где а – некоторая постоянная величина; если подставить (3) в (2), то получим уравнение линий тока (1), поскольку из (3) следует:
ωx= aUx; ωy= aUy; ωz= aUz. (4)
Здесь следует интересный вывод о том, что векторы линейной скорости и угловой скорости сонаправлены, то есть параллельны.
В более широком понимании надо представить себе следующее: так как рассматриваемое движение установившееся, то получается, что частицы жидкости движутся по спирали и их траектории по спирали образуют линии тока. Следовательно, линии тока и траектории частиц – одно и то же. Движение такого рода называют винтовым.
4) вторая строка определителя (точнее, члены второй строки) равна нулю, т. е.
ωx= ωy= ωz= 0. (5)
Но отсутствие угловой скорости равносильно отсутствию вихревости движения.
5) пусть строка 3 равна нулю, т. е.
Ux = Uy = Uz = 0.
Но это, как нам уже известно, условие равновесия жидкости.
Анализ уравнения Бернулли завершен.
Вязкость. Ламинарное течение в трубе. Формула Пуазейля. Турбулентное течение жидкости. Число Рейнольдса.
ВЯЗКОСТЬ– свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой.
Ламина́рное тече́ние (лат. lāmina — «пластинка») — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).
До 1917 года в российской науке пользовались термином Струйчатое течение.
Только в ламинарном режиме возможно получение точных решений уравнения движения жидкости (уравнений Навье-Стокса), например течение Пуазейля.
Закон Пуазёйля (иногда закон Хагена — Пуазёйля) — это физический закон так называемого течения Пуазёйля, то есть установившегося течения вязкой несжимаемой жидкости в тонкой цилиндрической трубке. Закон установлен эмпирически в 1839 году Г. Хагеном, а в 1840—1841 годы — независимо Ж. Л. Пуазёйлем. Теоретически объяснён Дж. Г. Стоксом в 1845 году.
При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.
где
— перепад давления на концах капилляра, Па;
— секундный объёмный расход жидкости, м³/с;
— радиус капилляра, м;
— диаметр капилляра, м;
— коэффициент динамической вязкости, Па·с;
— длина трубы, м.
Формула используется для определения вязкости жидкостей. Другим способом определения вязкости жидкости является метод, использующий закон Стокса
Турбуле́нтность, устар. турбуле́нция (от лат. turbulentus — бурный, беспорядочный), турбуле́нтное тече́ние — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности. Волны появляются случайно. То есть их размер и амплитуда меняется хаотически в некотором интервале. Они возникают чаще всего либо на границе, у стенки, и/или при разрушении или опрокидывании волны. Они могут образоваться на струях. Экспериментально ее можно наблюдать на конце струи пара из электрочайника. Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой жидкости (воды) в трубах.
Число,
или, правильнее, критерий
Рейно́льдса
(
),
— безразмерная величина, характеризующая
отношение нелинейного и диссипативного
членов в уравнении
Навье — Стокса[1].
Число Рейнольдса также считается
критерием
подобия
течения вязкой жидкости.
Число Рейнольдса определяется следующим соотношением:
где
— плотность среды, кг/м3;
— характерная скорость, м/с;
— характерный размер, м;
— динамическая вязкость среды, Н·с/м2;
— кинематическая вязкость среды, м2/с(
) ;
— объёмная скорость потока;
— площадь сечения трубы