
- •Скорость движения точки по прямой. Мгновенная скорость. Нахождение координаты по известной зависимости скорости по времени.
- •Мгновенная скорость ( )
- •Закон инерции. Инерциальные системы отсчета, система Коперника. Второй закон Ньютона. Третий закон и область его применимости.
- •Закон сохранения импульса в изолированной системе из двух материальных точек. Теорема о движении центра масс.
- •Закон сохранения момента импульса
- •Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Связь между динамическими и кинематическими характеристиками вращения твердого тела.
- •Гармонический осциллятор. Превращение энергии при колебаниях осциллятора. Гармонический осциллятор
- •Примеры гармонических осцилляторов (физический маятник, математический маятник, крутильный маятник)
- •Основные законы гидростатики. Барометрическая формула. Распределение Больцмана.
- •Поверхностное натяжение и лапласово давление. Капиллярный эффект, когезия и адгезия.
- •Понятие потока жидкости (газа) и уравнение непрерывности. Вывод уравнения Бернулли.
- •Анализ уравнения Бернулли
- •Преобразование Галилея. Механический принцип относительности. Постулаты специальной (частной теории) относительности. Преобразование Лоренца и следствия из них.
- •Основные положения молекулярно- кинетической теории. Вывод основного уравнения кинетической теории газов.
- •Вывод основных газовых законов. Уравнение состояния идеальных газов. Универсальная газовая постоянная.
- •Распределение скоростей молекул по Максвеллу. Наивероятнейшая скорость.
- •Теплоемкость, закон Джоуля, уравнение Роберта Майера. Способы измерения теплоемкостей твердых и жидких тел.
- •Обратимые и необратимые процессы. Равновесные и неравновесные процессы. Изопроцессы в газах. Круговые процессы или циклы.
- •Третий закон (третье начало) термодинамики– pабсолютный нуль температуры недостижим. К абсолютному нулю можно лишь асимптотически приближаться, никогда не достигая его.
- •Испарение и кипение. Плавление и кристаллизация.
- •Свойства электрического заряда. Закон Кулона , системы единиц. Электрическое поле. Напряженность электрического поля.
- •Вычисление напряженности поля систем зарядов. Объёмная, поверхностная и линейная плотность заряда.
- •Понятие потока вектора. Теорема Гаусса. Применение теоремы Гаусса для расчета симметрических полей.
- •Дивергенция, циркуляция, ротор вектора, их свойства. Теорема Стокса. Условие потенциальности. Теорема Остроградского- Гаусса. Теорема Гаусса в дифференциальной форме.
- •Свойства, непосредственно получаемые из обычных правил дифференцирования
- •[Править] Теорема Стокса
- •Граничные условия Еn и Еt.
- •Связь между потенциалом и напряженностью электрического поля.
- •Эквипотенциальные поверхности. Вычисление потенциала в поле заданных зарядов (точечный заряд, система точечных зарядов, непрерывно распределенный заряд).
- •Заряды и поле в проводниках ,электростатическая индукция. Общая задача электростатики проводников. Уравнение Пуассона, уравнение Лапласа.
- •Электроемкость, диэлектрическая проницаемость. Конденсаторы. Энергия электрического поля
- •Поляризация диэлектриков. Электрический диполь. Поляризованность.
- •Уравнение электростатики для диэлектриков. Вектор электрической индукции.
- •Источники тока. Характеристика электрического тока. Сторонние силы. Э.Д.С. Напряжение.
- •Эмиссия электронов. Термоэлектронная эмиссия. Электронные лампы. Ламповый выпрямитель. Сеточная характеристика лампы. Ток в газах.
- •Полупроводники. Собственная проводимость полупроводников. Примесная проводимость полупроводников. P- n – переход. Запирающий слой. Вольт- амперная характеристика полупроводникового диода.
Закон сохранения момента импульса
– при любых процессах в замкнутой системе ее полный момент импульса остается неизменным.
Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Связь между динамическими и кинематическими характеристиками вращения твердого тела.
Вращательным наз. такой вид движения при котором каждая т. Твердого тела в процессе своего движения описывает окружность.У.с –наз.величина равная первой производной от угла поворота от времени W=dφ/dt физический смысл у.с. изменение угла поворота за единицу времени у.с. у всех т. Тела будет одинакова [1рад/с] Угловое ускорение(ε) –физическая величина числено равная изменению угловой скорости за единицу времени ε=dw/dt, W=dφ/dt ε=dw/dt=d2φ/dt связь. ε V=Wr at=dv/dt=d/dt(Wr)=r*dw/dt(ε) at=[ε*r] an = V2/r =W2*r2/r an=W2r
Установим связь между угловыми характеристиками вращения всего тела и линейными характеристиками движения отдельных его точек. Для этого рассмотрим вращение диска и траекторию одной из его точек . Траекторией точки А будет окружность радиусом R . За малый интервал времени dt угловое перемещение будет равен ,а путь . Вследствие малости величин и .
При вращении тела движение каждой точки характеризуется,,, кроме угловых характеристик, ещё линейными характеристиками: путь S, скорость ,тангенциальноеи нормальное ускорения.
Для установления связи между ними продифференцируем выражение (1) по времени
т.к. и
то (2)
Взяв производную по времени от полученного выражения (2) получим,
где, а .Тогда (3)
Зная, что нормальное ускорение , после подстановки значения скорости (2) получим (3)Все величины, стоящие в формулах (1-4 )
являются векторными. При этом линейные векторные величины лежат в плоскости окружности по которой движется точка, а все угловые – вдоль оси вращения, перпендикулярной плоскости. Если положение рассматриваемой точки определить радиусом вектором, проведённым из лежащего на оси вращения начала координат О ,то вектор скорости ,а её модуль,где . Аналогично можно записать в векторной форме :
Момент инерции. Теорема Гюйгенса-Штейнера. Момент инерции и кинетическая энергия вращения твердого тела вокруг неподвижной оси.
^ Момент инерции точки - величина, равная произведению массы m точки на квадрат ее кратчайшего расстояния r до оси (центра) вращения: Jz = m r2, J = m r2, кг . м2.
Теорема Штейнера: Моментом инерции твердого тела относительно любой оси равен сумме момента инерции относительно оси проходящей через центр масс и произведению массы этого тела на квадрат расстояния между осями. I=I0+md2 .Величина I, равная сумме произведений элементарных масс на квадраты их расстояния от некоторой оси, наз. моментом инерции тела относительно данной оси. I=miRi2 Суммирование производиться по всем элементарным массам на которые можно разбить тело.
Перейти к: навигация, поиск
Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением.
Основные кинематические
характеристики вращательного движения
тела — его угловая
скорость
(
)
и угловое
ускорение.
Основные динамические характеристики
вращательного движения — момент
импульса
относительно оси вращения z:
и кинетическая энергия
где Iz — момент инерции тела относительно оси вращения.
Похожий пример можно найти при рассмотрении вращающейся молекулы с главными осями инерции I1, I2 и I3. Вращательная энергия такой молекулы задана выражением
где ω1, ω2, и ω3 — главные компоненты угловой скорости.
В общем случае,
энергия при вращении с угловой скоростью
находится
по формуле:
,
где
—
тензор
инерции
Инвариантность законов динамики в ИСО. Система отсчета движется поступательно и ускоренно. Система отсчета равномерно вращается. (Материальная точка покоится в НИСО, материальная точка движется в НИСО.). Теорема Кориолиса.
Си́ла Кориоли́са — одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения. Названа по имени французского учёного Гюстава Гаспара Кориолиса, впервые её описавшего. Ускорение Кориолиса было получено Кориолисом в 1833 году, Гауссом в 1803 году и Эйлером в 1765 году.
Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции, то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью. Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение, так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.
Для
того, чтобы тело двигалось с кориолисовым
ускорением, необходимо приложение силы
к телу, равной
,
где
—
кориолисово ускорение. Соответственно,
тело действует по третьему
закону
Ньютона
с силой противоположной направленности.
Сила,
которая действует со стороны тела, и
будет называться силой Кориолиса. Не
следует путать Кориолисову силу с другой
силой
инерции
— центробежной
силой,
которая направлена по радиусу
вращающейся окружности.
Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.