
- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики. 6
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения. 7
- •1 Вопрос. Классификация резисторов, маркировка, обозначение, допускаемые нормализованные отклонения.
- •2 Вопрос. Основные параметры и характеристики резисторов.
- •3 Вопрос. Терморезисторы, основные параметры и характеристики.
- •4 Вопрос. Варисторы и позисторы, принцип работы, основные параметры и характеристики.
- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики.
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения.
- •7 Вопрос. Основные параметры постоянных конденсаторов.
- •8 Вопрос. Переменные и подстроечные конденсаторы, конструктивные особенности.
- •9 Вопрос. Катушки индуктивности, особенности конструкции и способы изготовления.
- •10 Вопрос. Основные параметры и характеристики катушек индуктивности.
- •11. Особенности работы трансформаторов и их классификация.
- •12. Магнитопроводы трансформаторов и их конструктивные особенности.
- •13. Электропроводность полупроводников, основные положения теории электропроводности.
- •14. Полупроводниковые диоды, особенности работы и обозначения.
- •15. Выпрямительные и универсальные диоды, конструктивные особенности, параметры и характеристики.
- •16. Импульсные диоды, особенности работы, параметры и характеристики.
- •17. Принцип работы стабилитронов, основные параметры и характеристики и схема включения.
- •18. Варикапы, схема включения, принцип работы и основные параметры и характеристики, область использования.
- •19. Туннельные и обращаемые диоды основные параметры и характеристики.
- •20. Конструктивные особенности свч диодов, классификация и область использования.
- •21.Биполярные транзисторы, физические процессы и их обозначение.
- •22.Активный режим работы бт с об, входные и выходные характеристики и параметры.
- •23 Активный режим работы бт с оэ, входные и выходные характеристики и параметры.
- •24. Схема включения биполярного транзистора в режиме усиления тока (эмиттерный повторитель). Особенности работы.
- •25. Принцип работы биполярного транзистора с общей базой при подаче синусоидального напряжения.
- •26. Принцип работы биполярного транзистора с общим эмиттером при подаче синусоидального напряжения.
- •27.Динамический режим работы биполярного транзистора.
- •28.Работа биполярного транзистора с вч сигналами
- •29. Особенности конструкции и структуры свч-транзисторов
- •30.Классификация полевых транзисторов, отличительные особенности их работы.
- •]Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •31)Полевые транзисторы с управляющим р-п переходом, устройство и принцип действия.
- •32)Статические параметры и характеристики полевых транзисторов управляющим р-п переходом.
- •33)Особенности работы мпд транзисторов со встроенным каналом.
- •34)Статические характеристики и параметры мдп транзисторов со встроенным каналом.
- •35)Мдп транзисторы с индуцированным каналом, физические процессы, принцип работы.
- •36)Работа полевых транзисторов при малых синусоидальных сигналах.
- •40)Динамический режим работы полевых транзисторов.
- •41. Особенности работы полевых транзисторов в свч диапазоне.
- •43. Тринисторы, принцип работы, основные параметры и характеристики.
- •45. Излучающие полупроводниковые приборы, параметры и характеристики.
- •46. Основные сведения об электровакуумных приборах и физические основы их работы.
- •47. Двухэлектродные лампы, физические процессы.
- •48. Статические характеристики и параметры двухэлектродных ламп.
- •49. Электровакуумный диод в режиме нагрузки
- •50. Трехэлектродные лампы, физические процессы, основные параметры
- •51. Статические характеристики трехэлектродных ламп Работа трехэлектродной лампы с нагрузкой в анодной цепы.
- •53) 53. Работа трехэлектродных ламп в свч диапазоне.
- •54) Тетроды,особенности работы,статические параметры и характеристики.
- •55) Пентоды, статические параметры и характеристики.
- •56. Работа пентода в динамическом режиме с нагрузкой в анодной цепи
- •57. Электровакуумные фотоэлектронные приборы
- •58. Элекктронно-лучевые трубки, классификация, принцип работы.
- •59. Операционные усилители, функциональная схема, особенности работы.
- •60. Параметры и характеристики операционных усилителей.
57. Электровакуумные фотоэлектронные приборы
Электровакуумные фотоэлементы |
Электровакуумный (электронный или ионный) фотоэлемент представляет собой диод, у которого на внутреннюю поверхность стеклянного баллона нанесен фотокатод в виде тонкого слоя вещества, эмитирующего фотоэлектроны. Анодом обычно является металлическое кольцо, не мешающее попаданию света на фотокатод. В электронных фотоэлементах создан высокий вакуум, а в ионных находится инертный газ, например аргон, под давлением в несколько сотен паскалей (несколько миллиметров ртутного столба). Катоды обычно применяются сурьмяноцезиевые или серебряно-кислородно-цезиевые. Свойства и особенности фотоэлементов отображаются их характеристиками. Анодные (вольт-амперные) характеристики электронного фотоэлемента Iф = f(uа) при Ф = const, изображенные на рис. 22.2, а, показывают резко выраженный режим насыщения. У ионных фотоэлементов (рис. 22.2,б) такие характеристики сначала идут почти так же, как у электронных фотоэлементов, но при дальнейшем увеличении анодного напряжения вследствие ионизации газа ток значительно возрастает, что оценивается коэффициентом газового усиления, который может быть равным от 5 до 12.Энергетические характеристики электронного и ионного фотоэлемента, дающие зависимость Iф =f(Ф) при Ua = const, показаны на рис. 22.3. Частотные характеристики чувствительности дают зависимость чувствительности от частоты модуляции светового потока. Из рис. 22.4 видно, что электронные фотоэлементы (линия 1) малоинерционны. Они могут работать на частотах в сотни мегагерц, а ионные фотоэлементы (кривая 2) проявляют значительную инерционность, и чувствительность их снижается уже на частотах в единицы килогерц.
Рис. 22.2. Анодные характеристики электронного (а) и ионного (б) фотоэлемента
Рис. 22.3. Энергетические характеристики электронного (1) и ионного (2) фотоэлемента
Рис. 22.4. Частотные характеристики электронного (1) и ионного (2) фотоэлемента
Фотоэлемент обычно включен последовательно с нагрузочным резистором RH (рис. 22.5). Так как фототоки очень малы, то сопротивление фотоэлемента постоянному току весьма велико и составляет единицы или даже десятки мегаом. Сопротивление нагрузочного резистора желательно также большое. С него снимается напряжение, получаемое от светового сигнала. Это напряжение подается на вход усилителя, входная емкость которого шунтирует резистор RH. Чем больше сопротивление RH и чем выше частота, тем сильнее это шунтирующее действие и тем меньше напряжение сигнала на резисторе RH.
Рис. 22.5. Схема включения фотоэлемента
Основные электрические параметры фотоэлементов - чувствительность, максимальное допустимое анодное напряжение и темновой ток. У электронных фотоэлементов чувствительность достигает десятков, а у ионных фотоэлементов — сотен мкА на люмен. Темновой ток представляет собой ток при отсутствии облучения. Он объясняется термоэлектронной эмиссией катода и токами утечки между электродами. При комнатной температуре ток термоэмиссии может достигать 10-10 А, а токи утечки — 10-7 А. В специальных конструкциях фотоэлементов удается значительно снизить токи утечки, а ток термоэмиссии можно уменьшить лишь охлаждением катода до очень низких температур. Наличие темнового тока ограничивает применение фотоэлементов для очень слабых световых сигналов. Электровакуумные фотоэлементы нашли применение в различных устройствах автоматики, в аппаратуре звукового кино, в приборах для физических исследований. Но их недостатки — невозможность микроминиатюризации и довольно высокие анодные напряжения (десятки и сотни вольт) — привели к тому, что в настоящее время эти фотоэлементы во многих видах аппаратуры заменены полупроводниковыми приемниками излучения. |