- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики. 6
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения. 7
- •1 Вопрос. Классификация резисторов, маркировка, обозначение, допускаемые нормализованные отклонения.
- •2 Вопрос. Основные параметры и характеристики резисторов.
- •3 Вопрос. Терморезисторы, основные параметры и характеристики.
- •4 Вопрос. Варисторы и позисторы, принцип работы, основные параметры и характеристики.
- •Вопрос 5. Переменные резисторы, конструктивные особенности и основные параметры и характеристики.
- •Вопрос 6. Конденсаторы, разновидности конденсаторов, обозначение, маркировка и допускаемые нормализованные отклонения.
- •7 Вопрос. Основные параметры постоянных конденсаторов.
- •8 Вопрос. Переменные и подстроечные конденсаторы, конструктивные особенности.
- •9 Вопрос. Катушки индуктивности, особенности конструкции и способы изготовления.
- •10 Вопрос. Основные параметры и характеристики катушек индуктивности.
- •11. Особенности работы трансформаторов и их классификация.
- •12. Магнитопроводы трансформаторов и их конструктивные особенности.
- •13. Электропроводность полупроводников, основные положения теории электропроводности.
- •14. Полупроводниковые диоды, особенности работы и обозначения.
- •15. Выпрямительные и универсальные диоды, конструктивные особенности, параметры и характеристики.
- •16. Импульсные диоды, особенности работы, параметры и характеристики.
- •17. Принцип работы стабилитронов, основные параметры и характеристики и схема включения.
- •18. Варикапы, схема включения, принцип работы и основные параметры и характеристики, область использования.
- •19. Туннельные и обращаемые диоды основные параметры и характеристики.
- •20. Конструктивные особенности свч диодов, классификация и область использования.
- •21.Биполярные транзисторы, физические процессы и их обозначение.
- •22.Активный режим работы бт с об, входные и выходные характеристики и параметры.
- •23 Активный режим работы бт с оэ, входные и выходные характеристики и параметры.
- •24. Схема включения биполярного транзистора в режиме усиления тока (эмиттерный повторитель). Особенности работы.
- •25. Принцип работы биполярного транзистора с общей базой при подаче синусоидального напряжения.
- •26. Принцип работы биполярного транзистора с общим эмиттером при подаче синусоидального напряжения.
- •27.Динамический режим работы биполярного транзистора.
- •28.Работа биполярного транзистора с вч сигналами
- •29. Особенности конструкции и структуры свч-транзисторов
- •30.Классификация полевых транзисторов, отличительные особенности их работы.
- •]Транзисторы с управляющим p-n переходом
- •Транзисторы с изолированным затвором (мдп-транзисторы)
- •31)Полевые транзисторы с управляющим р-п переходом, устройство и принцип действия.
- •32)Статические параметры и характеристики полевых транзисторов управляющим р-п переходом.
- •33)Особенности работы мпд транзисторов со встроенным каналом.
- •34)Статические характеристики и параметры мдп транзисторов со встроенным каналом.
- •35)Мдп транзисторы с индуцированным каналом, физические процессы, принцип работы.
- •36)Работа полевых транзисторов при малых синусоидальных сигналах.
- •40)Динамический режим работы полевых транзисторов.
- •41. Особенности работы полевых транзисторов в свч диапазоне.
- •43. Тринисторы, принцип работы, основные параметры и характеристики.
- •45. Излучающие полупроводниковые приборы, параметры и характеристики.
- •46. Основные сведения об электровакуумных приборах и физические основы их работы.
- •47. Двухэлектродные лампы, физические процессы.
- •48. Статические характеристики и параметры двухэлектродных ламп.
- •49. Электровакуумный диод в режиме нагрузки
- •50. Трехэлектродные лампы, физические процессы, основные параметры
- •51. Статические характеристики трехэлектродных ламп Работа трехэлектродной лампы с нагрузкой в анодной цепы.
- •53) 53. Работа трехэлектродных ламп в свч диапазоне.
- •54) Тетроды,особенности работы,статические параметры и характеристики.
- •55) Пентоды, статические параметры и характеристики.
- •56. Работа пентода в динамическом режиме с нагрузкой в анодной цепи
- •57. Электровакуумные фотоэлектронные приборы
- •58. Элекктронно-лучевые трубки, классификация, принцип работы.
- •59. Операционные усилители, функциональная схема, особенности работы.
- •60. Параметры и характеристики операционных усилителей.
22.Активный режим работы бт с об, входные и выходные характеристики и параметры.
Схема с ОБ.
Входная характеристика: iЭ = f (UЭБ) при UКБ = const(рисунок 7).
При UКБ1 = 0 входная характеристика представляет собой обычную ВАХ прямосмещенного p-nперехода. При UКБ ≠ 0: когдаUЭБ = 0. т.е. ЕЭ = 0 имеем следующие процессы. В выходной цепи существует ток. Неосновные носители заряда проходя через узкую и достаточно длинную n-область создают разность потенциалов, который обеспечивает начальный ток эмиттера, т.е. при UКБ2 ≠ 0 происходит смещение ВАХ вверх по оси токов. С увеличением UКБсмещение будет увеличиваться, т.к. будет возрастать начальный ток эмиттера.
Выходная
характеристика: iК = f (UКБ)
при IЭ = const(рисунок 8).
При IЭ = 0 входная цепь разорвана и выходная ВАХ представляет собой ВАХ обратносмещенного p-nперехода.
При увеличении IЭ. При подключении ЕЭ и отсутствии ЕК IK создается основными носителями заряда инжектированными эмиттером. При подключении ЕК ток начнет увеличиваться из-за неосновных носителей базы. Но есть еще одно обстоятельство. При увеличении ЕК, коллекторный переход, находящийся под обратным смещением начнет уменьшаться. А значит дырке из эмиттера нужно пройти меньшее расстояние, чтобы попасть из базы вp-область, т.е. уменьшается вероятность ее рекомбинации – эффект модуляции тока. За счет этой составляющей коллекторный ток также увеличивается.
В сочетании с нагрузочной прямой по ВАХ можно получить реальный режим работы. При увеличении тока эмиттера увеличивается ток коллектора и уменьшается напряжение на нем. Существуют предельные значения напряжения UКБ и IК. Следовательно, существует и предельно допустимая мощность, выражаемая гиперболой. Этими границами руководствуются при выборе нагрузки, т.к. нагрузочная прямая не должна лежать за пределами границ.
23 Активный режим работы бт с оэ, входные и выходные характеристики и параметры.
Схема с ОЭ.
Входная
характеристика: iБ = f(UБЭ)
п
ри UКЭ = const (рисунок
9).
При UКЭ1 = 0 входная характеристика представляет собой обычную ВАХ прямосмещенногоp-n-перехода (эмиттерного, т.к.UКЭ=0).
При увеличении UКЭ2 IКБ0<0, т.к. ток протекает в направлении противоположном протеканию тока в нормальном активном режиме. Поэтому ВАХ смещается вниз по оси токов.
В
ыходная
характеристика:iК = f (UКЭ)
при IБ = const(рисунок 10).
При IБ = 0. В этом случае имеем два встречно соединенных p-n-перехода: 1- смещен в обратном направлении, 2 – в прямом. При обратном смещении сопротивление перехода велико, поэтому ток будет определяться обратносмещенным переходом. Поэтому в нашем случае, выходная ВАХ представляет собой ВАХ коллекторного перехода при обратном смещении. При IБ ≠ 0 : когда UКЭ = 0 IK < 0.
Примечание к 22-23
Рис. 1 - Схема включения транзистора с общим эмиттером
Усилительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току β. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:
при
Uк-э = const
Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем β, т. к. при включении нагрузки ток коллектора уменьшается.
Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является переменное напряжение uб-э, а выходным - переменное напряжение на резике, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает единиц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.
Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:
и составляет обычно от сотен Ом до единиц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°
К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например, в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.
Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.
Рис. 2 - Схема включения транзистора с общей базой
Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.
Коэффициент усиления по току схемы ОБ всегда немного меньше единицы:
т. к. ток коллектора всегда лишь немного меньше тока эмиттера.
Статический коэффициент передачи тока для схемы ОБ обозначается α и определяется:
при
uк-б = const
Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.
Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.
