
- •2. Общие сведения о точных теодолитах.
- •3.Измерение углов способом круговых приемов
- •5.Задачи теории ошибок измерений.
- •6.Ошибки измерений, их классификация и свойства.
- •7. Понятие о законах распределения ошибок.
- •8. Числовые характеристики точности измерений.
- •9. Средние квадратические ошибки функций измеренных величин,
- •10 Среднее арифметическое значение и его свойства
- •11. Поправки и их свойства. Выражение средней квадратической ошибки через поправки. Средняя квадратическая ошибка округления.
- •12. Определение средней квадратичеокой ошибки одного измерения по разностям двойных равноточных измерений.
- •13. Веса измерений и их свойства Соотношение между весами и средними квадратическими ошибками. Вес среднего арифметического.
- •14. Веса функций измеренных величин.
- •15.Средняя квадратическая ошибка единицы веса.
- •16. Среднее весовое. Средняя квадратическая ошибка и вес среднего весового.
- •17. Поправки неравноточных измерений одной и той же величины и их свойства.
- •18. Определение средней квадратической ошибки единимы веса по разностям двойных неравноточных измерений.
- •19. Оценка точности измерения углов и превышений по невязкам в полигонах и ходах.
- •20. Общие сведения о геодезической сети.
- •21. Государственная геодезическая сеть.
- •22. Сети сгущения и съёмочные сети.
- •23 .Последовательность видов работ при построении триангуляции.
- •24. Приведение измеренных направлений к центрам пунктов.
- •30 Допустимые размеры свободных членов условных уравнений
- •1. Для полюсных условий
- •31 Сущность уравнивания геод. Измерений по методу наименьших квадратов.
- •32 Понятие о коррелатном сп-бе уравнивания.
- •33.Суть упрощенного уравнивания
- •34.Уравнивание центральной системы.
- •35.Сущность уравнивания геод.
- •39 Передача координат с вершины знака на землю
- •40 Задачи прямой засечки
- •41 .Обратная засечка.
- •42 .Задача линейной засечки
- •43. Точность измерения расстояний электронными дальномерами.
- •44.Сущность фазового метода.
- •45 Способы разрешения неоднозначности.
- •46 Точность измерения расстояний.
- •47.Сведение о светодальн.
- •48.Устройство светодальномера.
- •49. Безотражательная технология измерения расстояний дальномером. *
- •50.Понятие о параметрическом способе уравнивания.
- •54. Решение нормальных уравнений по способу Гаусса.
- •55. Правило раскрытия алгоритма Гаусса.
- •56. Схемы для составления и решения нормальных уравнений.
- •57 .Сущность gps измерений.
- •58. Импульсный и фазовый методы точности точечного пазиционирования.
- •59.Относительное(векторное)позиционирование.
- •60 .Первые,вторые и третьи разности фаз.
- •61.Разрешение неоднозначности.
- •63. Техника gps позиционирования
- •64. Планирование gps измерений
7. Понятие о законах распределения ошибок.
Свойства случайных ошибок являются проявлением закона их распределения. В общем случае закон распределения ошибок отражает связь между размером ошибки и вероятностью ее появления. Распределение случайных ошибок измерений наиболее точно описывается законом нормального распределения. Плотность нормального распределения выражается формулой где <х - среднее квадратическое отклонение случайной ошибки. График функции (3) называется кривой нормального распределения, или кривой Гаусса (рис. 1.3). Эта кривая имеет симметричную колоколообразную форму. Заштрихованная площадь представляет собой вероятность появления ошибки в интервале от А до Д+с/Д. Есть ошибки, которые подчиняются закону равномерного или равновероятного распределения, к примеру, ошибки округления. Плотность распределения их выражается формулой. Основными характеристиками распределения случайной величины являются математическое ожидание и дисперсия. Математическим ожиданием X дискретной случайной величины х называют сумму произведений всех возможных значений случайной величины на соответствующие им вероятности. Для непрерывной случайной величины с плотностью распределения Л*) математическое ожидание. Дисперсией случайной величины X называется число, определяемое п° формуле Положительное значение квадратного корня из дисперсии называют стандартом или средним квадратическим отклонением. Для случайных ошибок измерений, как уже отмечалось, математическое ожидание равно нулю.
8. Числовые характеристики точности измерений.
В качестве теоретической характеристики точности измерений обычно пользуются средним квадратическим отклонением о. Поскольку величина а не известна, практически пользуются ее приближенным значением - средней квадратической ошибкой, определяемой по формуле, где Аь Аг, Д„- истинные ошибки измерений. При большом значении. При ограниченном числе измерений величина т будет характер изо» вать величину а с некоторой ошибкой. Для оценки точности определения самой средней квадратической ошибки существует формула. Оценку точности измерений характеризуют также предельной ошибкой, вычисляемой по формуле, где г - коэффициент, значение которого принимают таким, чтобы была мала вероятность появления ошибки больше предельной. Обычно для т принимают значения 3, 2,5. или 2. Этим значениям т соответствуют вероятности 0,003, 0,012, 0,046. Другими словами, на каждую тысячу измерений число ошибок, превосходящих по абсолютной величине предельную Дч,=3от, 2,5от, 2т в среднем приблизительно равно соответственно 3,12,46.В дальнейшем при решении задач по оценке точности измерений будем пользоваться формулой.Для оценки точности иногда пользуются средней ошибкой V и вероятной ошибкой г. Средняя ошибка вычисляется по формуле. При нормальном распределении она связана со средней квадратической ошибкой примерным соотношением. Если все ошибки расположить в ряд по возрастанию абсолютных значений, то ошибка оказавшаяся в середине ряда будет вероятной. Со средней квадратической ошибкой она связана соотношением. Ошибка, выраженная в единицах измерения, называется абсолютной. Отношение ее к измеренной величине.