
- •1. Понятие информации
- •2. Классификация и виды информационных технологий
- •3. История, состояние и перспективы развития вычислительной техники
- •4. Элементная база, архитектура компьютера
- •5. Состав и назначение пк. Виды компьютеров
- •6. Операционные системы
- •7. Языки и технологии программирования.
- •8.Процедурное, функциональное, объективно-ориентированное и логическое програмирование
- •9. Интегрированные пакеты
- •9. Пакет msOffice. Состав и назначение основных компонентов
- •10. Текстовый процессор ms Word. Набор и редактирование текста
- •10. Графический редактор ms Visio. Графические шаблоны
- •11. Табличный процессор ms Excel. Состав и структура документа
- •11. Табличный процессор ms Excel. Вычислительные возможности
- •12. Система подготовки презентации ms PowerPoint
- •13.Семиуровневая модель структуры протоколов связи
- •14. Компьютерные сети
- •15.Организационная структура Internet
- •16. Протоколы Internet (tcp и udp)
- •17. Основные сервисы Internet (dns, ftp, http, snmp, pop3, sntp)
- •18. Структура данных, модели данных, создание базы данных и таблиц
- •19. Системы управления базами данных
- •20. Базы данных Access, Oracle, MySql
- •21. Основы языка sql
- •22. Организационно-технические, правовые, криптографические и стеганографические методы защиты информации в компьютерных системах
- •23. Простейшие алгоритмы шифрования
- •24. Арифметика целых чисел и полей Галуа
- •25. Стандарт шифрования данных des
- •26. Электронная подпись
- •27. Математические модели
- •28. Системы математических вычислений. MathCad, MatLab
- •29. Численное Интегрирование и дифференцирование
- •30. Метод Рунге–Кутта
- •31. Методы теории вероятностей и математической статистики
- •32. Метод Монте-Карло
- •33. Методы минимизации функций одной переменных
- •34. Методы минимизации функций нескольких переменных
- •35. Задача линейного программирования
- •36. Поиск кратчайших путей
- •37. Принятие решений при многих критериях
- •1 Выбор Парето-оптимальных решений
- •2 Методы на основе компенсации критериев
- •3 Методика экспресс-анализа альтернатив
- •4 Методика скаляризации векторных оценок
- •38. Метод анализа иерархий
- •39. Методы поддержки принятия решений
- •1 Методика сравнительной оценки двух альтернатив по степени доминирования
- •2 Модифицированный алгоритм Кемени-Снелла
- •3 Алгоритм Саати
- •4 Метод электра
- •40. Экспертные системы
32. Метод Монте-Карло
Метод Монте-Карло (методы Монте-Карло, ММК) – общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи. Используется для решения задач в различных областях физики, химии, математики, экономики, оптимизации, теории управления и др.
Обычный алгоритм Монте-Карло интегрирования
Предположим,
требуется вычислить определённый
интеграл
Рассмотрим
случайную величину
,
равномерно распределённую на отрезке
интегрирования
.
Тогда
также
будет случайной величиной, причём
её математическое
ожидание выражается как
,
где
—
плотность распределения случайной
величины
,
равная
на
участке
.
Таким
образом, искомый интеграл выражается
как
.
Но матожидание случайной величины можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.
Итак,
бросаем
точек,
равномерно распределённых на
,
для каждой точки
вычисляем
.
Затем вычисляем выборочное среднее:
.
В
итоге получаем оценку интеграла:
Точность оценки зависит только от количества точек .
Этот
метод имеет и геометрическую интерпретацию.
Он очень похож на описанный выше
детерминистический метод, с той разницей,
что вместо равномерного разделения
области интегрирования на маленькие
интервалы и суммирования площадей
получившихся «столбиков» мы забрасываем
область интегрирования случайными
точками, на каждой из которых строим
такой же «столбик», определяя его ширину
как
,
и суммируем их площади.
Геометрический алгоритм Монте-Карло интегрирования
Рисунок 1. Численное интегрирование функции методом Монте-Карло
Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:
ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого
можно легко вычислить;
«набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек (
штук), координаты которых будем выбирать случайным образом;
определим число точек (
штук), которые попадут под график функции;
площадь области, ограниченной функцией и осями координат,
даётся выражением
.
Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.
Использование выборки по значимости
При том же количестве случайных точек, точность вычислений можно увеличить, приблизив область, ограничивающую искомую функцию, к самой функции. Для этого необходимо использовать случайные величины с распределением, форма которого максимально близка к форме интегрируемой функции. На этом основан один из методов улучшения сходимости в вычислениях методом Монте-Карло: выборка по значимости.