Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бухгалтерский учет и анализ.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
198.27 Кб
Скачать
  1. Интегральный метод измерения влияния отдельных факторов на обобщающие показатели.

При использовании интегрального метода расчеты проводятся на основе базовых значений показателей а ошибка вычислений (неразложимый остаток) распределяется между факторами поровну.

Интегральный метод позволяет относительно просто решить проблему неразложенного остатка. Он применяется для измерения влияния факторов в мультипликативных, кратных и кратно-аддитивных моделях.

Использование этого способа позволяет получать более точные результаты расчета влияния факторов по сравнению с другими методами и избежать неоднозначной оценки влияния факторов потому, что в данном случае результаты не зависят от местоположения факторов в модели, а дополнительный прирост результативного показателя, который образовался от взаимодействия факторов, раскладывается между ними поровну.

На первый взгляд может показаться, что для распределения эффекта одновременности достаточно взять его половину или часть, соответствующую количеству факторов. Но это сделать чаще всего сложно, т.к. факторы могут действовать в разных направлениях. Поэтому для равномерного распределения неразложенного остатка в интегральном методе пользуются определенными формулами.

Интегральный метод имеет и существенные недостатки. К ним можно отнести значительную трудоемкость расчетов, а также наличие принципиального противоречия между математической основой метода и природой экономических явлений. Дело в том, что большинство явлений и величин в экономике имеют дискретную природу, поэтому рассматривать бесконечно малые приращения, как того требует применение интегрального метода, бессмысленно.

  1. Метод долевого участия: сущность, условия, сфера применения.

В условиях решения аддитивных, а также кратно-аддитивных моделей для исчисления влияния отдельных факторов на изменение обобщающего показателя используется также способ долевого участия. Его сущность состоит в том, что вначале определяется доля каждого фактора в общей сумме их изменений. Затем эта доля умножается на общую величину изменения обобщающего показателя.

Предположим, что мы определяем влияние трех факторов — а,b и с на обобщающий показатель y. Тогда для фактора, а определение его доли и умножение ее на общую величину изменения обобщающего показателя можно осуществить по следующей формуле:

Δya = Δa/Δa + Δb + Δc*Δy

Для фактора в рассматриваемая формула будет иметь следующий вид:

Δyb =Δb/Δa + Δb +Δc*Δy

Наконец, для фактора с имеем:

Δyc =Δc/Δa +Δb +Δc*Δy

Такова сущность способа долевого участия, используемого для целей факторного анализа.

  1. Понятие корреляционного статистического анализа, возможности его использования в экономических исследованиях.

Корреляционный анализ есть метод установления связи и измерения ее тесноты между наблюдениями, которые можно считать случайными и выбранными из совокупности, распределенной по многомерному нормальному закону.

Корреляционной связью называется такая статистическая связь, при которой различным значениям одной переменной соответствуют разные средние значения другой. Возникать корреляционная связь может несколькими путями. Важнейший из них - причинная зависимость вариации результативного признака от изменения факторного. Кроме того, такой вид связи может наблюдаться между двумя следствиями одной причины. Основной особенностью корреляционного анализа следует признать то, что он устанавливает лишь факт наличия связи и степень ее тесноты, не вскрывая ее причин.

В статистике теснота связи может определяться с помощью различных коэффициентов (Фехнера, Пирсона, коэффициента ассоциации и т.д.), а в анализе хозяйственной деятельности чаще используется линейный коэффициент корреляции.

Коэффициент корреляции между факторами x и у определяется следующим образом:

Таким же образом вычисляется коэффициент корреляции между факторами в двухфакторной регрессионной модели вида у = ах + b, a также при любой другой форме связи между двумя показателями.

Значения коэффициента корреляции изменяются в интервале [-1; + 1]. Значение r = -1 свидетельствует о наличии жестко детерминированной обратно пропорциональной связи между факторами, r = +1 соответствует жестко детерминированной связи с прямо пропорциональной зависимостью факторов. Если линейной связи между факторами не наблюдается, r 0. Другие значения коэффициента корреляции свидетельствуют о наличии стохастической связи, причем чем ближе |r| к единице, тем связь теснее.

При |r|<0,3 связь можно считать слабой; при 0,3 < |r| < 0,7 - связь средней тесноты; |r| > 0,7 - тесная. Существуют и более дробные градации (например, таблица Чэддока).

Практическая реализация корреляционного анализа включает следующие этапы:

а) постановка задачи и выбор признаков;

б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения);

в) предварительная характеристика взаимосвязей (аналитические группировки, графики);

г) устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции;

д) исследование факторной зависимости и проверка ее значимости;

е) оценка результатов анализа и подготовка рекомендаций по их практическому использованию.