Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты статистики Часть 2.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
432.3 Кб
Скачать

Методы статистического изучения взаимосвязи социальных явлений.

Между социальными и экономическими явлениями имеется два основных типа связи —функциональнаяи корреляционная. В соответствии с этим подходом все признаки подразделяют на зависимые и независимые. Независимыми,  или факторными, называют признаки, которые вызывают изменения других, связанных с ними признаков. Зависящие от них признаки называют результативными.

При функциональной связи между признаками имеется взаимнооднозначное соответствие,  то есть одному значению факторного признака соответствует одно и только одно вполне определенное  значение результативного признака и наоборот. Например, взаимосвязь между длиной радиуса и окружности. Функциональные связи проявляются с одинаковой силой и полнотой у всех единиц совокупности.

При корреляционной связи каждому значению независимого признака может соответствовать множество значений зависимой переменной и наоборот. Такие связи проявляются лишь в среднем как закономерность, то есть под действием закона больших чисел.           Установление типа связей необходимо для определения метода их исследования, поскольку для разных типов связей применяют различные методы их исследования. Функциональные связи изучаются  с помощью балансового и индексного метода. Балансовый метод состоит  в проверке равенства.

 

Рис 2 - Взаимосвязи в балансовом методе анализа

По величине известных любых трех компонентов этого равенства можно определить (проверить) значение четвертого. Стохастические (корреляционные) связи. Стохастические связи проявляются в виде корреляции между значениями. Для их изучения применяются графический метод,  метод сравнения параллельных рядов, метод аналитических группировок и регрессионно-корреляционный анализ.

Регрессионный анализ позволяет выявить вид связи, а корреляционный - установить тесноту (силу) связи.

Показатели взаимной сопряженности

Коэффициент взаимной сопряженности предназначен для измерения тесноты стохастической связи и основан на сопоставлении частот или частостей условных распределений, в таблицах взаимной сопряженности. Величина коэффициента взаимной сопряженности и коэффициента сходства находится в зависимости исключительно только ог величины частот таблицы распределения. Ни значения признаков, ни порядок размещения частот в таблице не оказывают влияния на величину этих статистик. В силу этого рассматриваемые статистики могут быть применены для измерения связи как в случае количественных, так и в случае качественных признаков. Существует несколько вариантов коэффициента взаимной сопряженности. Величина коэффициента взаимной сопряженности и коэффициента сходства находится в зависимости исключительно только ог величины частот таблицы распределения. Ни значения признаков, ни порядок размещения частот в таблице не оказывают влияния на величину этих статистик. В силу этого рассматриваемые статистики могут быть применены для измерения связи как в случае количественных, так и в случае качественных признаков. Коэффициенты взаимной сопряженности Пирсона (С) и Чупрова (К):

где f2 – показатель средней квадратической сопряженности, определяемый путем вычитания единицы из суммы отношений квадратов частот каждой клетки корреляционной таблицы к произведению частот соответствующего столбца и строки: К1 и К2 – число групп по каждому из признаков. Величина коэффициента взаимной сопряженности, отражающая тесноту связи между качественными признаками, колеблется в обычных для этих показателей пределах от 0 до 1.

Понятия рядов динамики

1.Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений. 2.Массовые явления, как видели в предыдущих темах, развиваются в пространстве и во времени. Изучение происходящих при этом изменений является одной из важнейших задач статистики. Процесс развития массового явления во времени принято возникать динамикой, а а показатели, характеризующие это развитие – статистическими рядами динамики. Следовательно: Рядами динамики называются статистические данные, отображающие развитие явления в последовательные моменты или периоды времени.

Виды динамических рядов

1.Ряды динамики (статистические данные, отображающие развитие явления в последовательные моменты или периоды времени) содержат два вида показателей. Показатели времени t (годы, кварталы, месяцы и др.) или моменты времени – уровень развития изучаемого явления (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки. 2. В качестве показателя времени в рядах динамики выступают или определенные даты (моменты) времени, или отдельные периоды времени (годы, кварталы, месяца, сутки). Уровни рядов динамики количественную оценку (меру) развития во времени исследуемого явления. Они могут выражаться абсолютными, относительными, средними или приростными величинами. Ряды динамики, как правило, представляют в виде таблицы или графически. При графическом изображении ряда динамики (динамического ряда) на оси абсцисс строится шкала времени, а на оси ординат – шкала уравнений ряда (арифметическая или иногда логарифмическая). Изучение рядов динамики осуществляется в разных направлениях анализа состояния. Закономерности в изменении уравнений ряда в одних проявляется довольно наглядно, в других они могут затушевываться влиянием случайных или других причин. Во всех случаях одной из первых задач статистики исследования является выявление основной тенденции (основного направления) изменения уровней ряда, именуемой «трендом» а чаще количественная оценка темпов развития.