- •1) Происхождение и ранняя история развития земли
- •2) Внутренне строение Земного шара
- •Земная кора
- •Мантия Земли
- •Ядро Земли
- •3) Атмосфера, гидросфера и биосфера Земли
- •4) Тепловой режим Земли
- •5) Понятие о магме
- •6) Эндогенные и экзогенные процессы.
- •7) Химический и минеральный состав земной коры
- •Химический состав земной коры
- •Минералы
- •8) Распространенность химических элементов в земной коре
- •9) Общие сведения о минералах и процессах их образования.
- •12) Физические и химические свойства минералов
- •13) Классификация минералов
- •14) Минералы класса: “Самородные элементы”
- •15) Минералы класса: “Сульфиды”
- •16) Минералы класса: “Оксиды”
- •18) Минералы класса: “ Галогениды ”
- •19) Минералы класса: “Карбонаты”
- •20) Минералы класса: “Сульфаты”
- •21) Минералы класса: “Фосфаты”
- •22) Минералы класса: “Вольфраматы”
- •23) Минералы класса: “Силикаты”
- •26) Структура, текстура, формы залегания формы залегания горных пород
- •Формы залегания интрузивных пород
- •Формы залегания эффузивных пород
- •29) Седиментогенез, осадочные горные породы, их классификация, вещественный состав и строение
- •30) Метаморфизм и метаморфические горные породы, их классификация, вещественный состав, строение и формы залегания
- •31) Гипергенез и кора выветривания
- •36) Землетрясения и их классификация
- •38) Литосферные плиты
- •40) Методы определения возраста горных пород
- •41) Абсолютный и относительный возраст горных пород
- •Абсолютный возраст горных пород (лат. Absolutus — полный)
- •42) Фоссилии
- •Фоссилизация
- •43) История геологического развития Земли
- •49) Родиния, Гондвана, Пангея
- •Предполагаемое расположение материков
- •51) Геологические карты и их классификации
- •52) Геологические разрезы и способы их построения
- •Построение разреза
- •55) Геологическая съемка
- •56) Поиски месторождений полезных ископаемых
- •57) Разведка месторождений полезных ископаемых
- •58) Прогнозные ресурсы
- •59) Запасы категорий а, в, с
- •61) Эксплутационная разведка
14) Минералы класса: “Самородные элементы”
САМОРОДНЫЕ ЭЛЕМЕНТЫ — класс минералов, химический состав которых отвечает химическим элементам. Среди самородных элементов (около 80 минералов) различают самородные металлы, полуметаллы и неметаллы. Среди металлов наиболее распространены самородные Cu, Au, Ag, Pt и платиноиды. Реже встречаются самородные Bi, Sn, Hg; весьма редки Pb, Zn, Jn. В CCCP открыты также самородные Al, Cr, Cd, Со. Ряд самородных элементов типичен для метеоритов (Fe, Ni, Со), некоторые встречены в реголите Луны (Fe, Cu, Al) и в горных породах океанического дна (Au, Fe, Cu, Al). Неоднородность состава самородных элементов нередко обусловлена наличием в них примесей других элементов, образованием структур распада твёрдых растворов, интерметаллических соединений; это характерно для самородных Au (примеси Ag, Cu, Sb, As, Bi), Cu (Sb, As, Zn, Sn, Pb), Fe (Ni, Со, Cr), реже Pd (Se, As, Sn). Найдены также природные сплавы: бронзы, латуни, амальгамы и др.
Из самородных полуметаллов и неметаллов наиболее распространены аллотропные модификации углерода (алмаз, графит и др.) и серы (а-, b- и g-модификации), образующие собственные месторождения. Сравнительно редкими являются самородные As, Sb, Se, Te.
Формы выделений самородных элементов разнообразны: каплевидные зёрна, идиоморфные или нитевидные кристаллы, проволочно-вытянутые или плоские дендриты, ксеноморфные угловатые или пластинчатые (плёночные) образования (по границам сопутствующих минеральных индивидов и по трещинам).
Самородные элементы нередко ассоциируют в горных породах с карбидами металлов, углеродистыми веществами и образуются в восстановительных условиях, иногда при участии глубинных флюидов, обогащённых углеводородами или CO. Некоторые самородные элементы имеют космическое происхождение или связаны с земными магматитами, а также с процессами их метаморфизма (Fe, Ni, Со и др.). Ассоциации многих самородных элементов неравновесны, их стабильность зависит от окислительного потенциала среды, а сохранность — от наличия тонких пассивирующих оксидных плёнок на поверхности их зёрен. Самородные Au, Pt и платиноиды, алмазы и другие самородные элементы накапливаются в россыпях. Самородные Au, Ag, Hg, Cu часто образуются в зоне окисления сульфидных месторождений.
Промышленное значение имеют месторождения самородных Au, Ag, Pt, Cu, алмаза, графита, серы, отчасти также Sb, As, Hg. Малые количества самородных элементов важны как индикаторы условий породо- и рудообразования.
15) Минералы класса: “Сульфиды”
СУЛЬФИДЫ — класс минералов, соединения с серой (собственно сульфиды) и селеном (селениды), связанные друг с другом изоморфными отношениями (изоморфизм между сульфидами и селенидами – широкий, до полного). В отличие от сульфосолей природных, являющихся также соединениями с серой (селеном) и содержащих комплексные тиоанионные радикалы [AsS3]3-, [AsS4]5- и т.п., сульфиды природные содержат лишь моно- (типа S2-, Se2-) и полианионные (типа гантелей [S2]2-) группы. В природе известны около 100 минеральных видов, относящихся к сульфидам природным, из них только около 20 встречаются в больших количествах.
Сульфиды природные щелочных и щёлочноземельных элементов характеризуются ионной связью с S (или Se), легко гидролизуются, и в природе из них известен лишь ольдгамит (CaS), встречающийся крайне редко (например, в некоторых метеоритах). Наиболее распространены на Земле сульфиды природные халькофильных элементов, элементов семейства железа, молибдена; известны также сульфиды V, Cr, W, Pt, Ga, Jn, Te, Cd. Для них характерны ковалентная связь, иногда с металлической компонентой (пирротин, пентландит и т.п.), низкая растворимость в воде, устойчивость к гидролизу. Основная масса сульфидов природных имеет координационную структуру; для сульфидов элементов семейства железа типичны структуры с кластерными группами, обеспечивающими металлические компоненты связи. Меньшее число сульфидов имеет слоистые (молибденит, аурипигмент) или молекулярные (реальгар) структуры. Химический состав сульфидов природных обычно осложняется многочисленными изоморфными примесями, в основном в катионной части. Сульфиды элементов переменной валентности, в первую очередь Fe и Cu, часто образуют семейства минералов близкого или отклоняющегося от стехиометрии состава (семейства пирротина, халькозина и др.).
Немногие сульфиды природные, будучи относительно чистыми, оказываются бесцветными, прозрачными, с алмазным блеском (клейофан); основная же масса обладает полуметаллическим или металлическим блеском. Цвет их обычно от свинцово-серого (галенит, антимонит, висмутин) до чёрного (мартит, акантит, халькозин, ковеллин); некоторые из них имеют специфическую медно-жёлтую (халькопирит), коричнево-бурую или томпаково-бурую (пирротины, пентландиты) окраску. Немногие сульфиды природные ярко окрашены, что является их характерным диагностическим признаком (ярко-красный цвет реальгара, жёлтый — аурипигмента, хаулеита, тёмно-красный — киновари). Для некоторых сульфидов природных (борнита, ковеллина, халькопирита, иногда антимонита и др.) диагностическим признаком является побежалость, связанная с появлением тонкой плёнки вторичных окисленных продуктов на их поверхности.
Многие сульфиды природные обладают спайностью в нескольких направлениях (галенит, сфалерит и др.), для сульфидов со слоистой структурой типична спайность по одной плоскости (молибденит, аурипигмент). Твердость сульфидов природных колеблется от 1 у молибденита до 6-6,5 у марказита и пирита. Плотность меняется от средней (сульфиды Pb, Hg) до высокой (сульфиды Pt).
Большинство сульфидов — полупроводники или те, которые обладают металлической проводимостью (сульфиды с кластерами металл — металл в структуре). Некоторые сульфиды природные отличаются магнитностью (клинопирротин), ковкостью (халькозин, акантит).
Основная масса сульфидов природных образуется гидротермальным путём; известны также сульфиды магматические, метаморфического генезиса; некоторые из них возникают в результате экзогенных процессов. Сульфиды природные гидротермального генезиса часто образуют крупные скопления (месторождения колчеданные и полиметаллические), характерны также для скарнов, где являются, как правило, продуктами поздних гидротермальных этапов. Пирит, сфалерит, галенит, халькопирит и некоторые другие сульфиды природные типичны для отложений современных гидротерм (дно Красного моря, полуостров Челекен), областей активного вулканизма (Камчатка и др.), могут возникать в восстановительных условиях и на земной поверхности (например, в заражённых сероводородом бассейнах, в осадочных породах — углях, фосфоритовых конкрециях и др.), в зоне цементации (вторичного сульфидного обогащения) рудных месторождений. Магматическое происхождение имеют мельчайшие каплевидные вкрапленники сульфидов в лавах некоторых вулканов (Ключевской группы, островов Кунашир и Парамушир), а также халькопирит-пирротин-пентландитовые дифференцированные каплевидные образования в основных породах (например, на Норильских медно-никелевых месторождениях).
Для ассоциаций высоких ступеней метаморфизма сульфиды природные не характерны: они либо замещаются оксидами, либо растворяются и переносятся гидротермами в верхние горизонты земной коры. Редко сульфиды сохраняются в метаморфизованных месторождениях, даже после переплавления (месторождение Брокен-Хилл, Австралия). Для пород средней и низкой ступени метаморфизма сульфиды природные (особенно пирит, пирротины) являются типичными минералами. В поверхностных условиях сульфиды природные (за исключением киновари) легко окисляются, переходя в сульфаты (часто легкорастворимые), и замещаются оксидами, карбонатами, иногда элементарными веществами (самородные медь, серебро и другие металлы), силикатами (гемиморфит за счёт сфалерита), галогенидами (галогениды серебра, свинца, ртути и др.). Сульфиды природные — важные рудные минералы, сырьё для получения цветных, тяжёлых, многих редких и рассеянных металлов, их сплавов и соединений. Электрофизические, в т.ч. электрооптические и полупроводниковые, свойства сульфидов определяют их использование при изготовлении чувствительных элементов ИК-детекторов, различных полупроводниковых и электрооптических устройств.
