
- •1)Кинематика материальной точки. Путь, перемещение, скорость, ускорение. Тангенсальное и нормальное ускорения.
- •Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Инерциальная система отсчёта
- •Свойства инерциальных систем отсчёта
- •Уравнение движения
- •Введение
- •Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр тяжести
- •Момент импульса
- •Момент импульса в классической механике Определение
- •Момент силы
- •Общие сведения
- •Единицы
- •Момент инерции
- •Механическая работа
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Кинетическая энергия
- •Физический смысл
- •Физический смысл работы
- •Консервативные силы (физика)
- •О физическом смысле понятия потенциальной энергии
- •Закон сохранения энергии
- •Фундаментальный смысл закона
- •Частные формы закона сохранения энергии Классическая механика
- •[Править] Примеры
- •Вывод из уравнений Ньютона
- •Закон сохранения момента импульса
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Единицы измерения
- •Напряжённость электрического поля
- •Напряжённость электрического поля точечного заряда Для системы си
- •Теорема Гаусса
- •Диполь (электродинамика)
- •Дипольный момент системы
- •Электрический диполь
- •Пассивные свойства диэлектриков
- •Активные свойства диэлектриков
- •Поляризация диэлектриков
- •Свойства конденсатора
Момент инерции
Момент инерции |
|
|
|
Размерность |
L2M |
Единицы измерения |
|
СИ |
кг·м² |
СГС |
г·cм² |
Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Единица измерения СИ: кг·м².
Обозначение: I или J.
Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.
Теорема Гюйгенса-Штейнера
Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:
Если
—
момент инерции тела относительно оси,
проходящей через центр
масс тела, то момент инерции относительно
параллельной оси, расположенной на
расстоянии
от
неё, равен
,
где
—
полная масса тела.
Например, момент инерции стержня относительно оси, проходящей через его конец, равен:
Законы сохранения
1)Внутренние и внешние силы. Закон сохранения импульса.
В механике силой называют величину, характеризующую действие одного тела на другое, в результате которого происходит изменение состояния первого тела: изменяется его скорость или тело выходит из состояния покоя.
В зависимости от способа воздействия одного тела на другое различают: силу тяжести, силу упругости, силу деформации, силу трения, силу давления газа на поршень двигателя и др.
В природе нет материальных тел, находящихся вне воздействия на них других тел, а следовательно, все тела находятся под воздействием внешних или внутренних сил.
Внешние и внутренние силы.
Внешние силы—это силы, действующие на тело извне. Под влиянием внешних сил тело или начинает двигаться, если оно находилось в состоянии покоя, или изменяется скорость его движения, или направление движения. Внешние силы в большинстве случаев уравновешены другими силами и их влияние незаметно, только знание законов механики позволяет утверждать о действии внешних сил на тело, находящееся в покое.
Внешние силы, действуя на твердое тело, вызывают изменения его формы, обуславливаемые перемещением частиц.
Внутренними силами являются силы, действующие между частицами, эти силы оказывают сопротивление изменению формы.
Изменение формы тела под действием силы называют деформацией, а тело, претерпевшее деформацию, называют деформированным.
Равновесие внутренних сил с момента приложения внешней силы нарушается, частицы тела перемещаются одна относительно другой до такого состояния и положения, когда возникающие между ними внутренние силы уравновешивают внешние силы и тело сохраняет приобретенную деформацию.
Если внутренние силы малы и окажутся неспособными уравновесить внешние силы, то тело разрушается, разъединяясь на части.
После удаления внешней силы, если она не превзошла некоторого определенного предела, тело принимает свою первоначальную форму.
Свойство тел восстанавливать свою форму после снятия нагрузки называется упругостью, а вызванная деформация — упругой деформацией.
Свойство сохранения телом приобретенной деформации после снятия нагрузки называется пластичностью, а деформация — пластической.
При соприкосновении два тела воздействуют друг на друга и деформируются. Недеформированных тел не существует. Всякое тело деформируется при воздействии на него сколько угодно малой силы. Величину внутренних сил характеризует прочность сцепления частиц данного тела. Упругость пружин, резины является наглядным примером проявления внутренних сил.
Силы сопротивления движению. Тело при движении преодолевает силы сопротивления, величины которых различны, от небольшого торможения до сопротивления, останавливающего движущееся тело. К числу сил сопротивления, кроме внутренних сил, относят сопротивление среды (воздух, вода), силы инерции, силы трения.
Характеристика силы. Действие силы на тело, заключающееся в изменении состояния этого тела, вполне определяется следующими тремя факторами: точкой приложения силы, направлением силы, величиной силы.
Точкой приложения силы называется точка данного тела, на которую сила непосредственно действует, изменяя состояние данного тела.
Под направлением силы понимают то направление движения, которое получит тело под действием этой силы. Линией направления данной силы называется линия действия этой силы.
Измерение величины силы означает сравнение ее с некоторой силой, принятой за единицу. Измеряют силу обычно динамометрами разных конструкций (рис. 53, а, б).
Сила — величина векторная, т. е. имеющая не только числовое значение, но и направление, поэтому действие силы на тело определяется не только ее величиной, но и ее направлением.
Векторные величины графически изображаются в виде отрезков, имеющих определенную длину и направление (рис. 53, в), при этом длина отрезка АБ выражает в произвольно выбранном масштабе величину силы Р, стрелка указывает направление действия силы Р, а начало отрезка А является точкой приложения силы Р.
Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.
Вывод из формализма Ньютона
Рассмотрим выражение определения силы
Перепишем его для системы из N частиц:
где
суммирование идет по всем силам,
действующим на n-ю
частицу со стороны m-ой.
Согласно третьему закону Ньютона, силы
вида
и
будут
равны по абсолютному значению и
противоположны по направлению, то есть
Тогда
после подстановки полученного результата
в выражение (1) правая часть будет равна
нулю, то есть:
или
Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:
(постоянный
вектор).
То есть суммарный импульс системы частиц есть величина постоянная. Нетрудно получить аналогичное выражение для одной частицы.
Следует учесть, что вышеприведенные рассуждения справедливы лишь для замкнутой системы.
Также
стоит подчеркнуть, что изменение импульса
зависит
не только от действующей на тело силы,
но и от продолжительности её действия.
2)Работа и кинетическая энергия.