- •1)Кинематика материальной точки. Путь, перемещение, скорость, ускорение. Тангенсальное и нормальное ускорения.
- •Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Инерциальная система отсчёта
- •Свойства инерциальных систем отсчёта
- •Уравнение движения
- •Введение
- •Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр тяжести
- •Момент импульса
- •Момент импульса в классической механике Определение
- •Момент силы
- •Общие сведения
- •Единицы
- •Момент инерции
- •Механическая работа
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Кинетическая энергия
- •Физический смысл
- •Физический смысл работы
- •Консервативные силы (физика)
- •О физическом смысле понятия потенциальной энергии
- •Закон сохранения энергии
- •Фундаментальный смысл закона
- •Частные формы закона сохранения энергии Классическая механика
- •[Править] Примеры
- •Вывод из уравнений Ньютона
- •Закон сохранения момента импульса
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Единицы измерения
- •Напряжённость электрического поля
- •Напряжённость электрического поля точечного заряда Для системы си
- •Теорема Гаусса
- •Диполь (электродинамика)
- •Дипольный момент системы
- •Электрический диполь
- •Пассивные свойства диэлектриков
- •Активные свойства диэлектриков
- •Поляризация диэлектриков
- •Свойства конденсатора
Законы Ньютона
Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).
Первый закон Ньютона
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Современная формулировка
В современной физике первый закон Ньютона принято формулировать в следующем виде
-
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).
Историческая формулировка
Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:
-
Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить на «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.
Второй закон Ньютона
Основная статья: Второй закон Ньютона
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
Современная формулировка
-
В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:
где
—
ускорение
материальной точки;
—
сила,
приложенная к материальной точке;
m —
масса
материальной точки.
Или в более известном виде:
В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:
-
В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.
где
—
импульс
точки,
где
—
скорость
точки;
t —
время;
—
производная
импульса по времени.
Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:
или
Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.
Нельзя
рассматривать частный случай (при
)
второго закона как эквивалент первого,
так как первый закон постулирует
существование ИСО, а второй формулируется
уже в ИСО.
