
- •1)Кинематика материальной точки. Путь, перемещение, скорость, ускорение. Тангенсальное и нормальное ускорения.
- •Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Инерциальная система отсчёта
- •Свойства инерциальных систем отсчёта
- •Уравнение движения
- •Введение
- •Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр тяжести
- •Момент импульса
- •Момент импульса в классической механике Определение
- •Момент силы
- •Общие сведения
- •Единицы
- •Момент инерции
- •Механическая работа
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Кинетическая энергия
- •Физический смысл
- •Физический смысл работы
- •Консервативные силы (физика)
- •О физическом смысле понятия потенциальной энергии
- •Закон сохранения энергии
- •Фундаментальный смысл закона
- •Частные формы закона сохранения энергии Классическая механика
- •[Править] Примеры
- •Вывод из уравнений Ньютона
- •Закон сохранения момента импульса
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Единицы измерения
- •Напряжённость электрического поля
- •Напряжённость электрического поля точечного заряда Для системы си
- •Теорема Гаусса
- •Диполь (электродинамика)
- •Дипольный момент системы
- •Электрический диполь
- •Пассивные свойства диэлектриков
- •Активные свойства диэлектриков
- •Поляризация диэлектриков
- •Свойства конденсатора
Свойства конденсатора
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.
С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом
,
где
—
мнимая
единица,
—
частота[2]
протекающего синусоидального
тока,
—
ёмкость конденсатора. Отсюда также
следует, что реактивное
сопротивление конденсатора
равно:
.
Для постоянного тока частота равна
нулю, следовательно, реактивное
сопротивление конденсатора бесконечно
(в идеальном случае).
При
изменении частоты изменяются
диэлектрическая проницаемость диэлектрика
и степень влияния паразитных параметров —
собственной индуктивности
и сопротивления потерь. На высоких
частотах любой конденсатор можно
рассматривать как последовательный
колебательный
контур, образуемый ёмкостью
,
собственной индуктивностью
и
сопротивлением потерь
.
Резонансная частота конденсатора равна
При
конденсатор
в цепи переменного тока ведёт себя как
катушка
индуктивности. Следовательно,
конденсатор целесообразно использовать
лишь на частотах
,
на которых его сопротивление носит
ёмкостный характер. Обычно максимальная
рабочая частота конденсатора примерно
в 2—3 раза ниже резонансной.
Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:
где
—
напряжение
(разность потенциалов), до которого
заряжен конденсатор.
8)
Электромагнитная энергия — термин, под которым подразумевается энергия, заключенная в электромагнитном поле. Сюда же относятся частные случаи чистого электрического поля и чистого магнитного поля.
Энергия электрического и магнитного полей
Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.
Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.
В системе СИ:
В вакууме (а также в веществе при рассмотрении микрополей):
где
E —
напряжённость
электрического поля, B
— магнитная
индукция, D
— электрическая
индукция, H —
напряжённость
магнитного поля, с
— скорость
света,
—
электрическая
постоянная, и
—
магнитная постоянная. Иногда для констант
и
—
используют термины диэлектрическая
проницаемость и магнитная
проницаемость вакуума, — которые
являются крайне неудачными, и сейчас
почти не употребляются.
9)
Проводники́ — это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этих тел. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита). Пример проводящих жидкостей при нормальных условиях — ртуть, электролиты, при высоких температурах — расплавы металлов. Пример проводящих газов — ионизированный газ (плазма). Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.
Проводниками также называют части электрических цепей — соединительные провода и шины.
Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде.
Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)
Явление возникновения электрических зарядов на проводнике под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.
Появившиеся
индуцированные заряды создают собственное
индуцированное электрическое поле
,
которое направлено в сторону,
противоположную внешнему полю (рис.
226). Конечно, эти заряды создают поле как
внутри проводника, так и вне его. Суммарное
поле
отличается
от внешнего поля.
Рассмотренные особенности поведение проводников достаточно легко проиллюстрировать экспериментально.
Магнетизм
1)
Зако́н
Ампе́ра
— закон взаимодействия постоянных
токов.
Установлен Андре
Мари Ампером в 1820.
Из закона Ампера следует, что параллельные
проводники
с постоянными токами, текущими в одном
направлении, притягиваются, а в
противоположных — отталкиваются.
Законом Ампера называется также закон,
определяющий силу, с которой магнитное
поле действует на малый отрезок
проводника с током. Сила
,
с которой магнитное поле действует на
элемент объёма dV
проводника с током плотности
,
находящегося в магнитном поле с индукцией
:
.
Если
ток течёт по тонкому проводнику, то
,
где
—
«элемент длины» проводника — вектор,
по модулю равный dl
и совпадающий по направлению с током.
Тогда предыдущее равенство можно
переписать следующим образом:
-
Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :
.
Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки.
Модуль силы Ампера можно найти по формуле:
,
где α — угол между векторами магнитной индукции и тока.
Сила
dF
максимальна когда элемент проводника
с током расположен перпендикулярно
линиям магнитной индукции (
):
.
Два параллельных проводника
Два бесконечных параллельных проводника в вакууме
Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1 и I2. Требуется найти силу, действующую на единицу длины проводника.
Бесконечный проводник с током I1 в точке на расстоянии r создаёт магнитное поле с индукцией:
(по
закону
Био — Савара — Лапласа).
Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:
По
правилу буравчика,
направлена
в сторону первого проводника (аналогично
и для
,
а значит, проводники притягиваются).
Модуль данной силы (r — расстояние между проводниками):
Интегрируем, учитывая только проводник единичной длины (пределы l от 0 до 1):
Сила
Лоренца — сила,
с которой, в рамках классической
физики, электромагнитное
поле действует на точечную
заряженную
частицу. Иногда, силой Лоренца называют
силу, действующую на движущийся со
скоростью
заряд
лишь
со стороны магнитного
поля, нередко же полную
силу — со стороны электромагнитного
поля вообще[1]
иначе говоря, со стороны электрического
и
магнитного
полей
в СИ:
Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].
Частным случаем силы Лоренца является сила Ампера.
2)
Теорема о циркуляции вектора B :
Циркуляция вектора маг. Индукции равна току охватанному контуром , умноженному на маг. Пост.
Теорема Гаусса для магнитной индукции
Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
или в дифференциальной форме
Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле[5]. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является (полностью) вихревым.
5)
Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждый моль вещества — суммарный магнитный момент), пропорциональный магнитной индукции H и направленный навстречу полю. Поэтому магнитная восприимчивость χ = I/H у диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость χ мала и слабо зависит как от напряжённости магнитного поля, так и от температуры.
Парамагнетики
— вещества, которые намагничиваются
во внешнем магнитном
поле в направлении внешнего
магнитного поля. Парамагнетики относятся
к слабомагнитным веществам, магнитная
проницаемость незначительно
отличается от единицы
.
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl2) и др.
Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).
Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор.
3)
На контур с током, помещенным в МП действует вращающий момент M=p *B
Магнитный диполь – аналог электрического, который можно представить себе как систему 2х маг. Зарядов. В качестве мА. Диполя можно рассматривать небольшую плоскую замкнутую проводящую рамку S по корой течет ток I. Магнитный момент характеризует маг. Свойства вещ-ва.
4)
Ток намагничивания - это молекулярный ток, усредненный по объему при отсутствии внешнего МП в среде равно 0
Ток проводимости – эл ток связанный с движением заряженный частиц, относительно….?
Вектор намагниченности – маг. Момент элементарного объема, используемый для описания магнитного состояния.
6)
Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]
Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).
Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.
Основной
силовой характеристикой магнитного
поля является вектор
магнитной индукции
(вектор
индукции магнитного поля)[3][4].
С математической точки зрения
-
векторное
поле, определяющее и конкретизирующее
физическое понятие магнитного поля.
Нередко вектор магнитной индукции
называется для краткости просто магнитным
полем (хотя, наверное, это не самое
строгое употребление термина).
Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.
Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции
а вектор напряженности магнитного поля
, что формально можно сделать, так как в вакууме эти два вектора совпадают[5]; однако в магнитной среде вектор не несет уже того же физического смысла[6], являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно
Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.
Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.
Электрический ток(I), проходя по проводнику, создает магнитное поле (B) вокруг проводника.
С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.
Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью
.
Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна
где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу правой руки).
Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.
В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)
1 Тл = 104 Гс
Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.
Напряжённость магни́тного по́ля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В
СИ:
,
где μ0
- магнитная
постоянная
В
СГС:
В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).
В системе СГС напряжённость магнитного поля измеряется в Эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике Эрстед постепенно вытесняется единицей СИ — ампером на метр, 1 Э = 1000/(4π) А/м = 79,5775 А/м.
Физический смысл
В вакууме (или в отсутствии среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряженность магнитного поля совпадает с вектором магнитной индукции.
В магнетиках (магнитных средах) напряженность магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Например, если поле создается катушкой с током, в которую вставлен железный сердечник, напряженность магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ - с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, ничего не зная о материале сердечника и его магнитных свойствах.
При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является именно вектор магнитной индукции B, именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряженность магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать ее, по крайней мере, в статическом случае, проще, в чем и состоит ее ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи - то есть токи молекулярные и т.п. - учитывать не надо).
Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее, мы и из этого видим, что величина H феноменологически и тут весьма удобна.
Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).
Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике, и глубоко аналогичен ему. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты (так же, как закон Кулона для электростатики, получая остальные ее результаты получить исходя из него).
В современной формулировке закон Био—Савара—Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био—Савара—Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).