
- •Місце фізики у сучасному житті.
- •Підрозділи фізики та предмети їх досліджень.
- •Основні типи взаємодій. Їх роль у формуванні всесвіту.
- •Гравітаційна взаємодія, закон всесвітнього тяжіння.
- •Джерело гравітаційної взаємодії. Напруженість та потенціал поля точкової маси.
- •6. Гравітаційна взаємодія поблизу поверхні Землі
- •Електрична взаємодія. Закон Кулона.
- •Джерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •Принцип суперпозиції для гравітаційного та кулонівського поля.
- •Фізичні властивості твердих тіл та рідин.
- •Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •Терези. Типи терезів та вимірювання ваги.
- •13.Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14.Густина, як фізична характеристика речовини. Методи визначення густини.
- •Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •Інерціальні системи. Перший закон Ньютона.
- •Сила. Одиниці виміру сили. Прояви дії сили. Другий закон Ньютона.
- •Імпульс мт та повний імпульс механічної системи. Закон збереження імпульсу.
- •Третій закон Ньютона.
- •Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
- •Закон збереження енергії.
- •Однорідне силове поле. Рух мт в однорідному силовому полі.
- •Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •Поступальний та обертальний рухи твердого тіла (тт). Кутова швидкість та кутове прискорення.
- •Правило важелів Архімеда.
- •Гідростатика. Фізичні властивості рідини.
- •Закон Паскаля.
- •Закон Архімеда
- •Принцип дії гідравлічного пресу.
- •Гідродинаміка. Теорема про неперервність течії.
- •40. Рівняння Бернуллі та його наслідки
- •41.Підйомна сила крила
- •Рух реальної рідини. Сили внутрішнього тертя, коефіцієнт в’язкості.
- •Рух рідини по трубах. Пропускна спроможність труб.
- •Визначення коефіцієнту в’язкості.
- •Ламінарна та турбулентна течія. Число Рейнольда. Умови ламінарності течії.
- •Предмет дослідження молекулярної фізики. Будова речовин. Визначення вуглецевих одиниць.
- •Моль речовини. Число Авогадро. Характерний розмір молекул.
- •Температура. Визначення температури газовим термометром.
- •Шкала Цельсія та абсолютна шкала температури.
- •50. Рівняння Клапейрона.
- •Ізопроцеси. Закон Бойля-Маріотта
- •Закон Гей-Люссака.
- •53.Закон Шарля.
- •Парціальний тиск. Закон Дальтона.
- •55. Молекулярно-кінетична теорія газового тиску
- •Розподіл середньої енергії молекул за ступенями вільності.
- •Внутрішня енергія ідеального газу.
- •Перший початок термодинаміки. Робота газу при сталому тиску.
- •Теплоємність газу за сталого об’єму та сталого тиску.
- •Закон Дюлонга та Пті.
- •Барометрична формула.
- •Адіабатичний процес. Рівняння адіабати.
- •Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •Питома теплота плавлення та пароутворення речовини.
- •66. Рівняння Ван-дер-Ваальса. Ізотерми Ван-дер-Ваальса.
- •Класифікація матеріалів за електричними властивостями. Провідники, діелектрики, напівпровідники та надпровідники.
- •Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •Електричний диполь. Дипольний момент. Поле диполя.
- •Теорема Гауса.
- •Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле
- •П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •Поведінка провідників в електричному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •Джерело електрорушійної сили (гальванічний елемент, електрогенератори).
- •Конденсатори. Ємність плаского конденсатора.
- •Паралельне та послідовне з’єднання конденсаторів.
- •79.Енергія плоского конденсатора
- •Постійний електричний струм. Середня швидкість спрямованого руху електронів.
- •Густина струму. Закон Ома у локальній формі.
- •Провідність та питомий опір речовини.
- •Електроопір лінійних провідників. Закон Ома для ділянки кола.
- •Закон Джоуля-Лєнца.
- •Паралельне та послідовне з’єднання резисторів.
- •Перше та друге правила Кірхгофа на прикладах.
- •Термоелектричні явища. Ефекти Зеєбека та Пельт’є.
- •Явища термоелектронної емісії.
- •Електровакуумна лампа діод. Вольт-амперна характеристика вакуумного діоду.
- •90.Електронна лампа тріод
- •Магнітне поле. Закон Біо-Савара-Лапласа.
- •Напруженість та магнітна індукція. Сила Лоренца.
- •Магнітні поля колового та нескінченного струму.
- •Сила Ампера.
- •Закон циркуляції магнітного поля.
- •96.Соленоїд. Енергія та індуктивність довгого соленоїда.
- •97. Потік магнітного поля. Закон електромагнітної індукції Фарадея. Явище самоіндукції.
- •Принцип дії електричного генератора змінного струму.
- •Класифікація матеріалів за магнітними властивостями. Феромагнетики, парамагнетики та діамагнетики.
- •Принципи мас спектрометрії.
- •Поведінка провідників у змінному полі.
- •Електричні прилади і їх використання.
- •Променева трубка. Принцип роботи осцилографа. Фігури Ліссажу.
- •У мови виникнення періодичного руху.
- •Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •Енергія маятників. Рівняння руху маятників.
- •Власні частоти коливань математичного, пружинного та фізичного маятників.
- •Електричні коливання. Електричний коливальний контур.
- •Згасаючі електричні коливання.
- •Активний та реактивний опори.
- •Вимушені коливання. Явище резонансу.
- •Відкритий коливальний контур. Випромінювання електромагнітних хвиль.
- •Рівняння електромагнітного поля.
- •Принцип радіозв’язку. Модульований радіосигнал
- •Світлова хвиля. Довжини і частоти хвиль світлового діапазону.
- •Енергія світлової хвилі. Вектор Пойтінга.
- •Принцип Ферма розповсюдження світлових хвиль. Закони відбиття та заломлення світлових хвиль.
- •Фотометрія. Сила світла, освітленість, світимість – визначення та одиниці виміру
- •Геометрична оптика. Променеве наближення Чотири закони геометричної оптики.
- •Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •Формула тонкої лінзи той, що збирає і той, що розсіює.
- •Побудова оптичних зображень за допомогою тонкої лінзи.
- •Інтерференція світла і її умови.
- •Інтерференція світла від двох когерентних джерел.
- •Інтерференція світла на тонких плівках. Просвітлення оптики.
- •Дисперсія світла. Дослідження Ньютона.
- •Дифракція світла. Дифракційна гратка.
- •Елементи квантової фізики. Принцип невизначеності.
- •Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •Серії випромінювання. Умови квантування.
- •Потенціальна яма. Тунельний ефект.
- •Потенціальний бар’єр.
- •Ефект Компотна.
- •Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •Будова атому. Досліди Резерфорда.
- •Радіоактивність. Закон радіоактивного розпаду.
- •Радіоактивне випромінювання та взаємодія його з речовиною.
- •Взаємозв’язок маси та енергії матерії. Атомний розпад. Ланцюгова реакція.
- •Атомна енергетика
Імпульс мт та повний імпульс механічної системи. Закон збереження імпульсу.
Моментом імпульсу матеріальної точки відносно нерухомої точки називається векторний добуток:
Li=ri×mivi
Момент Li=rimivi sin α ,
де α- кут між векторами ri і vi
Закон збереження імпульсу полягає в наступному: момент імпульсу системи тіл не змінюється з часом, якщо сумарний момент зовнішніх сил рівний 0. Оскільки М=∑ rj ×Fj,, то це може бути не тільки в замкнутій або ізольованій системі, але і в незамкнутій, коли або rj=0, або плечи сил дорівнює 0.
Третій закон Ньютона.
Формулювання: Сили, що виникають при взаємодії двох тіл, є рівними за модулем і протилежними за напрямом.
Математично це записується так
,
де
-
сила, що діє на перше тіло з боку другого
тіла, а
-
навпаки, сила, що діє з боку першого
тіла на друге тіло.
Суперечливого формулювання «на всяку дію є рівна протидія» слід уникати.
Закон у сформульованій формі є справедливим для усіх фізичних сил, хоча існують деякі особливості формулювання цього закону в застосуванні до сил електромагнітного поля.
Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
Пружність — це здатність деформованих тіл відновлювати початкові форму і об’єм за умови припинення зовнішньої дії.
Сили пружності виникають при деформуванні тіл і напрямлені протилежно до сил, які викликають деформацію.
Сила пружності за
модулем прямо пропорційна зміні довжини
тіла
:
,
де k
— жорсткість тіла, що деформується
(пружини). Ця формула — один із виразів
закону пружності твердих тіл, що його
відкрив у 1660 р. англійський фізик Роберт
Гук.
Нехай стрижень із
пружного матеріалу початковою довжиною
і
початковою площею поперечного перерізу
здеформували
так, що він має
і
.
Відносним
видовженням
стрижня
називається відношення
.
Механічне напруження,
що виникає у стрижні, — це відношення
сили пружності
до
площі S 0:
.
Закон Гука при
невеликих видовженнях
констатує
пряму пропорційність між s i e:
,
тобто механічне напруження в тілі при
його деформації в межах пружності прямо
пропорційне відносному видовженню.
Коефіцієнт пропорційності Е називається модулем пружності, або модулем Юнга (на честь англійця Томаса Юнга).
Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
Потенціальна енергія — частина енергії фізичної системи, що виникає завдяки взаємодії між тілами, які складають систему, та із зовнішніми щодо цієї системи тілами, й зумовлена розташуванням тіл у просторі. Разом із кінетичною енергією, яка враховує не тільки положення тіл у просторі, а й рух, потенціальна енергія складає механічну енергію фізичної сиcтеми.
Потенціальна енергія матеріальної точки визначається як робота з її переміщення із точки простору, для якої визначається потенціальна енергія у якусь задану точку, потенціальна енергія якої приймається за нуль. Потенціальна енергія визначається лише для поля консервативних сил.
Потенціальна енергія здебільшого позначається літерами U або V.
Залежність
потенціальної енергії матеріальної
точки від просторових координат утворює
скалярне поле
.
Сила, яка діє на частку в полі , визначається, як
Повна енергія матеріальної точки є сумою потенціальної та кінетичної енергій. Для фізичної системи, що сладається з багатьох тіл повна енергія є сумою потенціальних та кінетичних енергій її складових, однак при цьому жодна взаємодія не повинна враховуватися двічі:
,
де Ki - кінетична енергія i-того тіла системи, Vij - потенціальна енергія j-го тіла завдяки взаємодії з i-тим.
Фізичні сили, для яких можна впровадити потенціальну енергію називаються потенціальними силами.
Робота зазвичай позначається латинською літерою A, й має розмірність енергії. У системі СІ робота вимірюється в Джоулях,
.
Згідно з цією формулою роботу здійснює тільки складова сили, яка паралельна переміщенню. Сила, яка перпендикулярна переміщеню, роботи не здійснює.
У випадку, коли тіло рухається по криволінійному контуру C, для знаходження роботи використовують таку формулу
У термодинаміці
при зміні об'єму тіла на величину dV під
дією тиску P над тілом виконується
робота
.