
- •Місце фізики у сучасному житті.
- •Підрозділи фізики та предмети їх досліджень.
- •Основні типи взаємодій. Їх роль у формуванні всесвіту.
- •Гравітаційна взаємодія, закон всесвітнього тяжіння.
- •Джерело гравітаційної взаємодії. Напруженість та потенціал поля точкової маси.
- •6. Гравітаційна взаємодія поблизу поверхні Землі
- •Електрична взаємодія. Закон Кулона.
- •Джерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •Принцип суперпозиції для гравітаційного та кулонівського поля.
- •Фізичні властивості твердих тіл та рідин.
- •Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •Терези. Типи терезів та вимірювання ваги.
- •13.Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14.Густина, як фізична характеристика речовини. Методи визначення густини.
- •Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •Інерціальні системи. Перший закон Ньютона.
- •Сила. Одиниці виміру сили. Прояви дії сили. Другий закон Ньютона.
- •Імпульс мт та повний імпульс механічної системи. Закон збереження імпульсу.
- •Третій закон Ньютона.
- •Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
- •Закон збереження енергії.
- •Однорідне силове поле. Рух мт в однорідному силовому полі.
- •Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •Поступальний та обертальний рухи твердого тіла (тт). Кутова швидкість та кутове прискорення.
- •Правило важелів Архімеда.
- •Гідростатика. Фізичні властивості рідини.
- •Закон Паскаля.
- •Закон Архімеда
- •Принцип дії гідравлічного пресу.
- •Гідродинаміка. Теорема про неперервність течії.
- •40. Рівняння Бернуллі та його наслідки
- •41.Підйомна сила крила
- •Рух реальної рідини. Сили внутрішнього тертя, коефіцієнт в’язкості.
- •Рух рідини по трубах. Пропускна спроможність труб.
- •Визначення коефіцієнту в’язкості.
- •Ламінарна та турбулентна течія. Число Рейнольда. Умови ламінарності течії.
- •Предмет дослідження молекулярної фізики. Будова речовин. Визначення вуглецевих одиниць.
- •Моль речовини. Число Авогадро. Характерний розмір молекул.
- •Температура. Визначення температури газовим термометром.
- •Шкала Цельсія та абсолютна шкала температури.
- •50. Рівняння Клапейрона.
- •Ізопроцеси. Закон Бойля-Маріотта
- •Закон Гей-Люссака.
- •53.Закон Шарля.
- •Парціальний тиск. Закон Дальтона.
- •55. Молекулярно-кінетична теорія газового тиску
- •Розподіл середньої енергії молекул за ступенями вільності.
- •Внутрішня енергія ідеального газу.
- •Перший початок термодинаміки. Робота газу при сталому тиску.
- •Теплоємність газу за сталого об’єму та сталого тиску.
- •Закон Дюлонга та Пті.
- •Барометрична формула.
- •Адіабатичний процес. Рівняння адіабати.
- •Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •Питома теплота плавлення та пароутворення речовини.
- •66. Рівняння Ван-дер-Ваальса. Ізотерми Ван-дер-Ваальса.
- •Класифікація матеріалів за електричними властивостями. Провідники, діелектрики, напівпровідники та надпровідники.
- •Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •Електричний диполь. Дипольний момент. Поле диполя.
- •Теорема Гауса.
- •Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле
- •П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •Поведінка провідників в електричному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •Джерело електрорушійної сили (гальванічний елемент, електрогенератори).
- •Конденсатори. Ємність плаского конденсатора.
- •Паралельне та послідовне з’єднання конденсаторів.
- •79.Енергія плоского конденсатора
- •Постійний електричний струм. Середня швидкість спрямованого руху електронів.
- •Густина струму. Закон Ома у локальній формі.
- •Провідність та питомий опір речовини.
- •Електроопір лінійних провідників. Закон Ома для ділянки кола.
- •Закон Джоуля-Лєнца.
- •Паралельне та послідовне з’єднання резисторів.
- •Перше та друге правила Кірхгофа на прикладах.
- •Термоелектричні явища. Ефекти Зеєбека та Пельт’є.
- •Явища термоелектронної емісії.
- •Електровакуумна лампа діод. Вольт-амперна характеристика вакуумного діоду.
- •90.Електронна лампа тріод
- •Магнітне поле. Закон Біо-Савара-Лапласа.
- •Напруженість та магнітна індукція. Сила Лоренца.
- •Магнітні поля колового та нескінченного струму.
- •Сила Ампера.
- •Закон циркуляції магнітного поля.
- •96.Соленоїд. Енергія та індуктивність довгого соленоїда.
- •97. Потік магнітного поля. Закон електромагнітної індукції Фарадея. Явище самоіндукції.
- •Принцип дії електричного генератора змінного струму.
- •Класифікація матеріалів за магнітними властивостями. Феромагнетики, парамагнетики та діамагнетики.
- •Принципи мас спектрометрії.
- •Поведінка провідників у змінному полі.
- •Електричні прилади і їх використання.
- •Променева трубка. Принцип роботи осцилографа. Фігури Ліссажу.
- •У мови виникнення періодичного руху.
- •Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •Енергія маятників. Рівняння руху маятників.
- •Власні частоти коливань математичного, пружинного та фізичного маятників.
- •Електричні коливання. Електричний коливальний контур.
- •Згасаючі електричні коливання.
- •Активний та реактивний опори.
- •Вимушені коливання. Явище резонансу.
- •Відкритий коливальний контур. Випромінювання електромагнітних хвиль.
- •Рівняння електромагнітного поля.
- •Принцип радіозв’язку. Модульований радіосигнал
- •Світлова хвиля. Довжини і частоти хвиль світлового діапазону.
- •Енергія світлової хвилі. Вектор Пойтінга.
- •Принцип Ферма розповсюдження світлових хвиль. Закони відбиття та заломлення світлових хвиль.
- •Фотометрія. Сила світла, освітленість, світимість – визначення та одиниці виміру
- •Геометрична оптика. Променеве наближення Чотири закони геометричної оптики.
- •Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •Формула тонкої лінзи той, що збирає і той, що розсіює.
- •Побудова оптичних зображень за допомогою тонкої лінзи.
- •Інтерференція світла і її умови.
- •Інтерференція світла від двох когерентних джерел.
- •Інтерференція світла на тонких плівках. Просвітлення оптики.
- •Дисперсія світла. Дослідження Ньютона.
- •Дифракція світла. Дифракційна гратка.
- •Елементи квантової фізики. Принцип невизначеності.
- •Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •Серії випромінювання. Умови квантування.
- •Потенціальна яма. Тунельний ефект.
- •Потенціальний бар’єр.
- •Ефект Компотна.
- •Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •Будова атому. Досліди Резерфорда.
- •Радіоактивність. Закон радіоактивного розпаду.
- •Радіоактивне випромінювання та взаємодія його з речовиною.
- •Взаємозв’язок маси та енергії матерії. Атомний розпад. Ланцюгова реакція.
- •Атомна енергетика
Інтерференція світла і її умови.
Інтерференція - додавання двох світлових хвиль у просторі, внаслідок чого спостерігається стійка в часі картина підсилення або послаблення результуючих світлових коливань у різних точках простору. Зони підсилення називають зонами максимумів, зони послаблення - мінімумів. Щоб положення цих зон було незмінним і картина інтерференції залишалась стійкою в часі, хвилі мають зберігати свої властивості, не змінюючи їх з часом. Якщо ця умова виконана (різниця фаз у хвилях з часом їх частота є однаковою), то хвилі називають когерентними.
Інтерференція світла від двох когерентних джерел.
Світло - це електромагнітна хвиля, тому, якщо в просторі одночасно поширюються дві чи більше хвиль, то в кожній точці хвилі будуть накладатись одна на одну, утворюючи інтерференційну картину. Вона складається із повторюваних мінімумів (min) і максимумів (max) освітленості.
Нехай від джерел S1 i S2 поширюються дві хвилі, які збігаються в точці А. d1 і d2 - довжина ходу першої і другої хвиль; Dd = d1 – d 2 - різниця ходу.
Якщо в різницю ходу Dd вкладається парна кількість півхвиль, то обидві хвилі надійдуть в точку А в однакових фазах і підсилять одна одну - в точці А буде максимальним. Якщо в різницю ходу Dd вкладається непарне число півхвиль, то хвилі прийдуть в точку А в протифазах і погасять одна одну - в точці А буде мінімум інтенсивності світла.
Математично умови максимум i мінімум можна виразити так:
-
умова максимуму;
-
умова мінімуму.
де k = 1, 2, 3,…, n (ціле число); l - довжина хвилі.
Інтерференція світла на тонких плівках. Просвітлення оптики.
Ц
ікавий
випадок інтерференції
спостерігав
Юнг розглядаючи у відбитому
світлі
тонкі
плівки
(рис. 6.37).
Одна частина світлового потоку відбивається від верхньої поверхні плівки, а друга - після заломлення від нижньої. Після цього обидва промені збігаються в оці спостерігача. При цьому виникає різниця ходу, що дорівнює подвоєній товщині плівки Dd = 2h. У результаті цього і виникає інтерференційна картина. Якщо освітлюється плівка одним кольором, спостерігається чергування чорних і білих смуг, а якщо білим , то зазвичай кольори веселки.
Інтерференцією світла в тонких плівках пояснюється забарвлення мильних бульбашок і тонких п'ятен з оливи на воді, хоча розчин мила й олива не мають такої гами кольорів.
Дисперсія світла. Дослідження Ньютона.
Дисперсія світла — залежність показника заломлення (або діелектричної проникності) середовища від частоти.
Здебільшого показник заломлення зростає при збільшенні частоти. Це зростання називають нормальною дисперсією. Аномальна дисперсія — зменшення показника заломлення при збільшенні частоти — виникає в спектральних областях, близьких до частот інтенсивного поглинання.
Середовище реагує на зміну зовнішнього електричного поля зміною наведеної в ньому поляризації. Поляризація виникає завдяки зміщенню зв'язаних зарядів, наприклад, зміщенню електронів відносно ядер атомів. Процеси зміщення не відбуваються миттєво, а вимагають певного часу.
Коли електричне поле світлової хвилі, яка розповсюджується в середовищі, змінюється повільно, середовище встигає повністю відреагувати на зміну поля.