
- •4.Осн задачи и этапы коррел-регр анализа.Спецификация ур-я регрессии.Схема анализа зав-тей
- •5,6.)Парная линейная регрессия. Оценка коэф регрессии. Коэф эластичности. Метод наименьших квадратов
- •7.Предпосылки мнк (условия Гаусса-Маркова)
- •8.) Парная корреляция. Нахождение линейного коэффициента корреляции и парного коэффициента детерминации. Проверка значимости коэффициента корреляции.
- •9.Модель множественной линейной регрессии
- •10.Матрица коэффициентов парной регрессии. Коэффициент множественной корреляции. Коэффициент детерминации.
- •11. Проверка адекватности модели. Критерий Фишера.
- •10.Множественная корреляция. Матрица парных линейных коэф корреляции, нахождение коэф множественной корреляции и коэф детерминации.
- •12. Нелинейные модели и их линеаризация. Обратная зависимость. Степенная и показательная модели.
- •13. Мультиколлинеарность, ее последствия и причины возникновения.
- •1 4. Автокорреляция, ее основные причины и последствия.
- •15. Гетероскедатичность.Графический анализ отклонений.
- •16. Временные ряды и их классификация
- •17.Стационарный врем.Ряд
- •19. Системы одновременных уравнений
- •20. Идентификация модели. Необходимое и достаточное условие
- •21 Задачи и этапы эмм
- •22.Виды критериев оптимальности предп в соврем условиях
- •23. Понятие о методе межотраслевого баланса.
- •24. Стоимостный моб.
- •24.Смоб
- •25.Экономико-математическая модель моб
- •26. Матричные игры с нулевой суммой. Решение матричных игр в чистых стратегиях.
- •27. Решение матричных игр в смешанных стратегиях.
- •28.Игры с природой. Решение статистических игр при известных вероятностях состояний природы (критерии Байеса, Лапласа )
- •29.Вальда,Гурвица,Сэвиджа
- •29. Матрица рисков. Критерий Сэвиджа.
- •30. Элементы сетевого планирования. Основные понятия.
- •31.Временные параметры сетевого графика
- •32.Модели управления запасами. Основные понятия.Основная модель управления запасами
- •34. Цель изучения смо, основные элементы. Классификация смо.
- •36. Смо с отказами
19. Системы одновременных уравнений
В такой системе одни и те же переменные системы рассматриваются одновременно как объясняемые в одном и том же уравнении и как объясняющие в остальных уравнениях.Виды систем уравнений:
1) система независимых уравнений.Каждый результативный признак(объясняемая переменная) yj,где j=1,n является функцией одной и той же совокупности факторов xi, где i=1,m.Набор факторов в каждом уравнении системы может изменяться в зависимости от изучаемого явления.
2) система рекурсивных уравнений.Результативный признак yj,где j=1,n одного уравнения системы в каждом последующем уравнении является фактором наряду с одной и той же совокупностью факторов xi, где i=1,m.
3)система одновременных уравнений.Результативный признак yj,где j=1,n одного уравнения системы входит во все другие уравнения системы в качестве фактора наряду с одной и той же совокупностью факторов xi, где i=1,m.
Систему независимых или рекурсивных уравнений решают с помощью МНК.Для решения системы одновременных уравнений требуются другие,отличные от МНК методы.Системы совместных уравнений представляют наибольший практический интерес.такие системы эффективны в эконометрических исследованиях и наиболее широко применяются в макроэкономике.
Структурная форма модели:
Содержание параметров структурной формы модели
Параметр |
Содержание параметра |
|
Свободный член ур-ния модели
Коэф-т при эндогенной переменной
Коэф-т при экзогенной переменной |
Виды переменных:
-эндогенные переменные(y) определяются внутри модели и являются зависимыми переменными;
-экзогенные переменные(x) определяются вне системы и являются независимыми переменными. Предполагается,что они не коррелируют с ошибкой в соответствующем уравнении;
-предопределенная-экзогенные и лаговые(за предыдущие моменты времени)эндогенные переменные этой системы.
Классы структурных уравнений модели:
1Поведенческие уравнения. Описывают взаимодействия между эндогенными и экзогенными переменными;
2Тождества. Устанавливают соотношение между эндогенными переменными,не содержат случайных составляющих и структурных коэффициентов модели.
Структурная форма модели может быть преобразована в приведённую форму:
Параметр. (коэф приведенной модели) |
Содержание параметра.
|
,
где
,
|
Свободный член ур-ния сис-мы.
Коэф при предопределенной переменной явл ф-цией коэф стр-ной формы модели. |
Причины построения приведённой формы модели:
1оценки параметров структурной формы модели, найденные с помощью МНК являются смещенными и несостоятельными(нарушаются предпосылки МНК) в силу того,что эндогенные переменные коррелируются со случайными отклонениями;
2независимость уравнений в приведённой форме модели позволяет определить состоятельные оценки её параметров с помощью МНК;
3параметры(коэффициенты) приведённой формы модели связаны с параметрами её структурной формы.