
- •Реферат
- •Содержание
- •Раздел 1. Состояние проблемы получения керамик на основе оксидов алюминия 10
- •Раздел 2. Описание оборудования и методики исследования 37
- •Раздел 3. Исследовательская часть 39
- •Раздел 4. Безопасность и экологичность проекта. 63
- •Введение
- •Раздел 1. Состояние проблемы получения керамик на основе оксидов алюминия
- •1.1 Привлекательность наноструктурных керамических материалов для перспективных применений
- •1.2. Особенности спекания керамики из наноразмерных порошков
- •1.3. Способы получения тонкодисперсных порошков
- •1.3.1. Метод осаждения в газовой фазе
- •1.3.2 Гидролиз элементорганических соединений
- •1.3.3. Гетерофазный синтез в жидкой фазе
- •1.3.4. Гидротермальный метод
- •1.3.5. Процессы в газовой фазе
- •1.3.6. Топохимические реакция
- •1.3.7. Методы с участием плазмы
- •1.3.8. Электроэрозионный способ
- •1.3.9. Криохимвческин метод
- •1.3.10. Методы разложения и твердофазный синтез
- •1.3.11. Золь - гель метод
- •Полимерные гели
- •Коллоидные золи
- •Диспергированные коллоидные частицы.
- •1.4. Полиморфизм Аl203 в наноструктурном состоянии и методы управления рекристаллизацией для получения керамики оксида алюминия
- •1.5. Применение керамик
- •1.5.1. Доокисление отработанных газов двигателей внутреннего сгорания (двс).
- •1.5.2. Разработка керамических фильтрующих материалов с регулируемой поровой.
- •1.5.3. Применение в медицине.
- •Раздел 2. Описание оборудования и методики исследования
- •2.1 Сканирующий электронный микроскоп
- •2.2 Изучение фазового состава частиц осадка
- •2.5 Определение прочностных свойств спеченных керамик
- •2.6. Рентгеновский фазовый анализ
- •Раздел 3. Исследовательская часть
- •3.1. Особенности технологического процесса получения керамики из продукта химического диспергирования сплава Al-Si (12%масс.).
- •3.2. Технологическая схема спекания
- •3.3. Изучение свойств керамических образцов (плотность, пористость, усадка).
- •3.3.1. Свойства керамических образцов, изготовленных из продукта химического диспергирования алюминиевого сплава Al-Si (12%масс.).
- •3.4. Изучение механических свойств керамических образцов (прочность, трещиностойкость, ударный изгиб).
- •3.4.1. Механические свойства керамических образцов, изготовленных из продукта химического диспергирования алюминиевого сплава Al-Si (12%масс.).
- •Раздел 4. Безопасность и экологичность проекта.
- •4.1 Введение
- •4.2 Воздействие на человека электрического тока
- •4.3 Электробезопасность производственных систем
- •4.4 Защитное заземление
- •4.5. Расчёт параметров защитного заземления лабораторной установки
- •4.6. Расчёт
- •5. Организационно-экономическая часть разработка бизнес-плана
- •5.1. Меморандум конфиденциальности
- •5.2. Резюме
- •5.3. Задание на исследование.
- •5.4. План по организации научно-исследовательской работы
- •5.4.1. Используемое оборудование и приборы
- •5.4.2 Численность работников, занятых исследованием.
- •5.5. Планирование научно-исследовательской работы
- •5.5.1. Сетевое планирование и управление нир
- •5.5.2. Построение сетевого графика
- •5.5.3. Расчёт параметров сетевого графика
- •5.5.3. Расчет параметров сетевого графика
- •5.6. План по определению затрат на исследование
- •5.6.1. Определение капитальных затрат и амортизационных отчислений
- •5.6.2. Определение затрат на материалы и комплектующие изделия.
- •5.6.3. Определение затрат на заработную плату.
- •5.6.4. Определение затрат на энергоносители.
- •5.6.5. Определение расходов по содержанию и эксплуатации оборудования.
- •5.6.6. Определение расходов на научные и производственные командировки.
- •5.6.7. Определение затрат на оплату работ, выполненных сторонними организациями и предприятиями
- •5.6.8. Определение накладных расходов.
- •5.6.9. Составление сметы затрат на выполнение нир.
- •5.7. Маркетинговые исследования
- •5.8. Технико-экономическое обоснование нир
- •6. Выводы по дипломной работе
- •Список литературы
Введение
Современное состояние и развитие технологии керамики и прежде всего технологии высококачественных порошков, как сырьевых материалов, так и добавок, а также теории спекания показывают, что далеко не исчерпаны возможности создания на основе оксидов и их соединений новых видов керамики, в том числе на основе оксида алюминия. Разработка новых технологических решений, принципов подбора необходимых порошков способствуют созданию новых по качеству материалов и расширению областей их применения.
Керамические материалы на основе оксида алюминия широко используются в различных областях промышленности, что обусловлено особым комплексом свойств - высокие температура эксплуатации, прочность, термостойкость и износостойкость, химическая стойкость.
При создании керамик различного функционального назначения основным требованием является получение материала с заданной структурой с оптимальными физико-механическими свойствами. Можно выделить несколько перспективных проблем материаловедения, возникающих при разработке таких материалов. Например, существует проблема при получении катализаторов для доокисления выхлопных газов в двигателях внутреннего сгорания, которая заключается в создании активного поверхностного слоя из метастабильных модификаций оксида алюминия, способного работать при температурах до 900°С. Использование нанокристаллических керамических порошков открывает принципиально новые возможности при создании катализаторов за счет запасенной избыточной поверхностной энергии, по сравнению с крупнокристаллическими порошками, которая может привести к изменению температурных интервалов фазовых переходов.
Другой проблемой является создание мембран и фильтрующих керамических элементов с многослойной структурой с высокими прочностными свойствами. Одним из решений этой проблемы может стать использование нанокристаллических порошков, в процессе спекания которых, происходит формирование особых многозеренных нанокристаллических структур с высокой прочностью связи на границах зерен, составляющих керамический каркас, в результате чего увеличивается прочность всего материала. Создание керамик на основе наноструктурных порошков и их смесей с крупнокристаллическими порошками, позволит направленно формировать структуру керамических материалов без использования таких вспомогательных технологических приемов, как введение пено- и порообразователей, которые, как правило, отрицательно сказываются на прочностных свойствах керамики.
Таким образом, разработка единого подхода, который позволял бы создавать керамические материалы с заданной структурой и свойствами при различном соотношении крупно- и нанокристаллических порошков в исходной смеси является актуальной задачей. В этом случае будет обеспечено эффективное практическое применение керамик на их основе.
Установлено, что в плазмохимическом порошке Аl2О3 наблюдается сохранение большого содержания метастабильных модификаций до высоких температур, а затем в узком интервале (-1150- 1200°С) происходит резкий переход в ромбоэдрическую решетку, который носит «взрывной» характер и в процессе спекания приводит к активации диффузии.
Показано, что в керамических материалах на основе оксида алюминия с различным соотношением крупно- и нанокристаллических порошков основная часть дефектов расположена по границам зерен. При увеличении содержания плазмохимического порошка в исходной смеси порошков, после спекания в керамике с пористостью около 50%, происходит смена характера поровой структуры от изолированных пор и поровых кластеров к структуре, состоящей из двух взаимопроникающих компонент вещество-пора. Это сопровождается резким ростом микроискажений кристаллической решетки.
Установлено, что в процессе спекания исследуемых керамик преобладает диффузия по границам зерен, независимо от соотношения крупно- и нанокристаллических порошков в исходной смеси. Увеличение содержания нанокристаллического порошка оксида алюминия в исходной смеси порошков приводит к смене механизмов уплотнения в процессе спекания, и, как следствие, становится возможным получение контролируемой усадки спекаемого материала, вплоть до безусадочного синтеза керамики.