
- •Д.В. Иоргачев
- •Д.В. Иоргачев
- •Isbn 5-88405-041-0 © Авторы, 2002 содержание
- •Глава 1. Краткий обзор по истории развития оптической связи …………………………………….6
- •Глава 2. Основные принципы действия волоконных световодов.
- •Глава 3. Оптические волокна и кабели. Классификация,
- •Глава 4. Основные положения по конструированию и особенности
- •Глава 5. Методы испытания волоконно-оптических кабелей ..........................................................139
- •5.3.1. Общие положения .........................................................................................................146
- •Глава 6. Строительство и монтаж волоконно-оптических линий связи.........................................168
- •Глава 7. Основы технической эксплуатации волоконно-оптических линий связи .....................205
- •Глава 1
- •Глава 2
- •2.1. Волны, частицы и электромагнитный спектр
- •2.2. Принцип действия волоконных световодов
- •2.3. Основные положения геометрической (лучевой) оптики
- •2.3.1. Основы геометрической оптики
- •2.3.2. Анализ лучевого распространения света в волоконных световодах
- •2.4. Основные положения волновой теории
- •2.4.1. Основные понятия
- •2.4.2. Взаимодействие оптической волны со средой
- •2.4.3. Волновые уравнения
- •2.4.4. Граничные условия
- •2 .4.5. Волновой анализ распространения мод
- •2.4.6. Глоговское группирование мод
- •2.5. Параметры оптических волокон
- •2 .5.1. Геометрические и оптические параметры оптических волокон
- •2.5.2. Параметры передачи оптических волокон
- •2.5.3. Механические параметры оптических волокон
- •Глава 3
- •3.1. Многомодовые и одномодовые оптические
- •3.2. Материалы оптических волокон из кварцевого стекла
- •3.3. Изготовление оптических волокон
- •3.3.1. Общие положения
- •3.3.2. Технология изготовления опорных кварцевых труб
- •3.3.3. Изготовление заготовок путем плавления стекла
- •3.3.4. Изготовление заготовки методом осаждения стекла из паровой фазы
- •3.3.5. Модифицированный метод химического парофазного осаждения (мсvd)
- •3.3.6. Плазменный метод химического парофазного осаждения (pcvd)
- •3.3.7. Метод внешнего парофазного осаждения (ovd)
- •3.3.8. Метод осевого парофазного осаждения (vаd)
- •Vad метод изготовления заготовок
- •3.3.9. Вытяжка оптического волокна
- •3.4. Конструкции и материалы волоконно-оптических кабелей
- •3.4.1. Типы конструкций волоконно-оптических кабелей
- •3.4.2. Основные элементы волоконно-оптического кабеля
- •3.4.3. Защита волоконно-оптического кабеля от влаги
- •3.4.4. Пожаробезопасность волоконно-оптических кабелей
- •3.4.5. Материалы для конструктивных элементов волоконно-оптических кабелей
- •3.4.6. Конструкции волоконно-оптических кабелей
- •Глава 4.
- •4.1. Исходные положения по конструированию
- •4.2. Расчет параметров вок на основе общих
- •4.3. Расчет оптических параметров и параметров передачи ов
- •4.4. Расчет механической прочности ок
- •4.4.1. Оценка внешних механических нагрузок, действующих на ок
- •4.4.2. Расчет механической прочности оптического кабеля и выбор конструкции
- •4.5. Расчет геометрических размеров вок и его элементов
- •4.5.1. Расчет геометрических размеров вок
- •4.5.2. Конструирование и расчет гофрированного покрова вок
- •4.6. Расчет масс элементов волоконно-оптического кабеля
- •4.7. Расчет уровня затухания оптического волокна
- •4.8. Технология изготовления волоконно-оптических кабелей
- •Глава 5
- •5.1. Классификация испытаний вок
- •5.2. Цель и особенности основных видов испытаний вок
- •5.3. Методы испытания вок
- •5.3.1. Общие положения
- •5.3.2. Методы измерения конструктивных параметров
- •5.3.3. Методы измерения оптических характеристик и параметров вок
- •5.3.4. Методы испытания вок на стойкость к механическим воздействиям
- •5.3.5. Методы испытания вок на стойкость к воздействию внешних факторов
- •Глава 6
- •6.1. Особенности и организация строительства волс
- •6.2. Прокладка и подвеска оптических кабелей
- •6.2.1. Прокладка ок в телефонной канализации
- •6.2.2. Прокладка ок в трубах, лотковой канализации, коллекторах и туннелях
- •6.2.3. Прокладка ок в грунт
- •6.2.4. Прокладка ок через водные преграды
- •6.2.5. Подвеска кабелей на опорах воздушных линий и стойках
- •6.3. Оптические соединители, конструкции муфт ок и
- •6.3.1. Потери при соединении волокон
- •6.3.2. Подготовка ов к сращиванию
- •6.3.3. Способы сращивания ов
- •6.3.4. Оконцовка волокна
- •6.3.5. Конструкции муфт ок и особенности их монтажа
- •Глава 7
- •7.1. Организация технической эксплуатации волс
- •7.2. Эксплуатационно-технические требования к волс
- •7.3. Организация технического обслуживания волс
- •7.4. Планирование, контроль и обеспечение работ
- •7.5. Технический учет и паспортизация волс
- •7.6. Ремонт линейных сооружений волс
- •7.7. Охрана кабельных сооружений волс
- •7.8. Телеконтроль, служебная связь и электропитание
- •7.9. Методы измерения волоконно-оптических линий связи
- •7.9.1. Назначение и виды измерений
- •7.9.2. Методы измерения параметров и характеристик
- •7.9.3. Измерения на воли во время аварий
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6.
- •Глава 7.
6.3.4. Оконцовка волокна
Для стыковки двух ОВ с помощью коннекторов
каждое волокно должно иметь на к
Рис. 6.37.
Схематическое изображение соединителя
для ленты с восьмью волокнами
Части оконцованного соединителя связываются друг с другом соединительным патроном (рис. 6.38). Патрон имеет высверленное с высокой точностью отверстие и внешние зажимы для быстрого закрепления частей устройства. Высверленная часть бывает либо чисто металлической, либо содержит пластиковую вставку, обеспечивающую эластичное уплотнение соединителя.
Рис. 6.38. Соединитель
В большинстве соединителей для поддерживания волокна вдоль оптической оси используются специальные наконечники. В каком-то смысле многие соединители отличаются только корпусами, включающими в себя наконечники. Керамические наконечники позволяют достичь лучшего качества, чем металлические и пластиковые, кроме того, они наиболее предпочтительны для одномодовых волокон. Керамика является прочным материалом, позволяющим высверливать отверстие под волокно с высокой точностью. Кроме того, она имеет прекрасные температурные и механические свойства, которые практически остаются прежними при изменении температурных и других внешних условий.
Пластиковые наконечники снижают стоимость соединителя, но обеспечивают менее качественное соединение. Наконечники из нержавеющей стали имеют промежуточные характеристики. Их популярность объясняется прочностью и меньшей хрупкостью по сравнению с керамикой.
Для наконечников используется два вида керамик: окись алюминия и окись циркония. Первоначально применяли окись алюминия — твердый, неэластичный материал, позволяющий очень точно выдерживать допуски. Коэффициент теплового расширения окиси алюминия — степень увеличения или уменьшения линейных размеров образца при изменении температуры — очень близок аналогичному коэффициенту для стекла. Недостатком данного материала является его хрупкость и разрушение при незначительных давлениях. Кроме того, полировка окиси алюминия достаточно сложна, особенно в полевых условиях.
Окись циркония — более мягкий вид
керамики и более устойчивый по отношению
к механическим ударам. Он к тому же
достаточно прочен и позволяет выдерживать
допуски подобно о
киси
алюминия, но, в отличие от нее, легче
полируется. Наиболее популярный размер
наконечника равен 2,5 мм в диаметре, что
фактически стало стандартом.
L
Рис. 6.39. LME
коннектор
ME
коннектор с цилиндрическим наконечником
для использования с многомодовыми
волокнами был разработан фирмой Ericsson.
Он может быть рассмотрен как предшественник
SMA коннектора. В отличие от SMA (на который
существует мировой стандарт) ЬМЕ
коннектор имеет направляющий соединитель,
который удерживает неподвижно наконечники
для их соединения (рис. 6.39).
S
Рис. 6.40. SMA
коннектор
F
Рис. 6.41. FC
коннектор
В
Рис. 6.42. Шлифовка
наконечника формы
сферического
изгиба:
а-супер РС
методом; б-ультра РС методом
Наконечники в FC и FC/РС коннекторах сделаны из нержавеющей стали с керамическими капиллярами или являются полностью керамическими. Последний вид исполненная имеет низкую стоимость; более лучший физический контакт и долговечность.
FC/РС коннектор преимущественно используют в телефонных распределительных панелях, повторителях и на линиях большой протяженности для соединения активных элементов или в высокоскоростных передатчиках (лазеры или там, где требуется низкий коэффициент отражения).
Коннекторы монтируются на одно- или двухволоконный кабели (пигтейл), которые затем соединяются (механически или методом сварки) с волокнами волоконно-оптического кабеля. Патчкорды используют для соединения и разъединения передающего или измерительного оборудования.
S
Рис. 6.43. SC
коннектор
лушкой.
Наконечник выполняется из керамики и
фиксируется пружиной. Диаметр наконечника
такой же как и у FC и FC/PC коннекторов. Он
имеет в основном те же оптические
характеристики, что и РС коннектор, но
его плотность увеличена в 8 раз. Все
части, не влияющие на оптические
характеристики коннектора, изготовлены
из пластика. Область его использования
та же, что и у коннекторов, описанных
выше.
S
Рис. 6.44.
ST
коннектор
рис.6.44)
ST коннектор соединяется и разъединяется
методом штыкового соединения, это похоже
на BNC коннектор для коаксиальных кабелей.
Наконечники обоих коннекторов выпускаются
или металлокерамическими или полностью
керамическими.
М
Рис. 6.45. LС
коннектор
Наконечник с внешним диаметром 1,25 мм и специальными конструктивными решениями существенно улучшает массогабаритные показатели коннектора и розетки. Розетка по своим посадочным местам полностью соответствует стандартному гнезду RJ-45 и за счет этого позволяет установку во все стандартные из cтандартные изделия Lucent Technologies при увеличении плотности портов вдвое без изменения внешних габаритов. Разработчики коннектора гарантируют до 500 циклов включения-отключения без ухудшения характеристик потерь. Этому, наряду с использованием керамического наконечника, способствует принцип линейного включения вилки в гнездо (push pull).
Для установки коннектора LС применяются стандартные процедуры заклейки на эпоксидной смоле. Конструкция коннектора допускает его монтаж как на волокне в буферном покрытии 0,9 мм, так и на соединительных шнурах с 2,4-мм шлангом. При этом монтаж на 900-микрометровое волокно может производиться в полевых условиях, тогда как наклейка на кабель в шланге 2,4 мм в процессе изготовления соединительных шнуров из-за малых габаритов выполняется только на производстве.
FDDI коннектор разработан преимущественно для высокоскоростных сетей передачи данных, что требовало передачи сигналов на большие расстояния (свыше 2 км между пунктами). FDDI коннектор имеет конструкцию сдвоенного волоконного кольца (рис. 6.46).
Рис. 6.46. Коннектор для FDDI сети. Коннектор
содержит оконцовку входного и выходного волокна
Коннектор с линзовым расширением луча разработан для использования в особенно жестких условиях эксплуатации. Волокно снабжено линзами на концах коннектора. Линзы расширяют луч, выходящий из волокна, затем он передается через коннектор на другой конец, где похожая линза производит обратный процесс. Расширенный луч менее чувствителен к загрязнению.
Коннектор с линзовым расширением луча может использоваться для оконцовки от одного до четырех волокон (рис. 6.47).
M
Рис. 6.47. Коннектор
с линзовым расширением луча
T
коннектор используется для соединения
1,4,8 волоконных оптических ленточных
кабелей.(рис.6.48). Он имеет исключительно
маленькие размеры 3х7х10 мм. В качестве
направляющих для юстировки оптических
волокон в его конструкции используются
два металлических стержня. Поверхности
коннектора зашлифованы параллельно, и
коннектор держится вместе с пружиной.
Потери в МТ коннекторе не должны превышать
1 дБ.
Р
Рис. 6.48. MТ
коннектор
Существует большое количество различных коннекторов. Для структурированных сетей и низкоскоростных оптических сетей коннекторы могут быть подготовлены, отшлифованы и отполированы прямо на месте установки специальным оборудованием, индивидуальным для каждого вида монтажа. На телефонных станциях ГТС и междугородных ОРП оконцовка кабелей больших телекоммуникационных сетей всегда осуществляется коннекторами, отшлифованными заводским способом. Существуют коннекторы для многомодовых и одномодовых волокон. В последнее время разработаны специальные виды коннекторов, например FDDI коннекторы, разработанные для соединения сетей с высокими требованиями.