
- •1. Понятие класса. Методы класса. Управление доступом к компонентам.
- •2. Объявление и определение класса. Внешнее определение функций.
- •3. Создание, копирование и удаление объекта.
- •4. Статические компоненты класса. Инициализация статических компонентов класса.
- •5. Наследование. Типы наследования. Виртуальное наследование.
- •6. Виртуальные функции
- •7. Абстрактные классы и чистые виртуальные функции. Интерфейс
- •8. Дружественность. Дружественные классы и функции.
- •9. Вложенные классы. Внутреннее и внешнее определение.
- •10. Шаблоны классов
- •11.Создание экземпляров шаблона. Инстанцирование.
- •12.Шаблоны и наследование.
- •13.Терминология шаблонов.
- •14. Параметры и аргументы шаблона.
- •15. Шаблоны компонентных функций
- •16. Полная специализация шаблонов.
- •17. Частичная специализация шаблонов.
- •18. Перегрузка операций. Основные понятия.
- •19. Перегрузка унарных операций.
- •20. Перегрузка бинарных операций.
- •Int test() {
- •Int test() {
- •Int test() {
- •// Делаем что-то
- •Вопрос 23
- •24. Группировка и композиция исключений. Повторная генерация. Перехват всех исключений.
- •25. Автоматическое управление ресурсами. Методика raii.
- •Void f() { FileOpen("myfile.Txt", "rt"); //здесь выполняем нужную работу с файлом //... }
- •Void f (int a) throw (x2, x3)
- •27. Стандартная библиотека. Организация стандартной библиотеки
- •28. Тип вектора. Вложенные типы. Итераторы. Доступ к элементам
- •29.Тип Вектора. Конструкторы. Операции со стеком. Списочные операции. Размеры и емкость.
- •30. Стандартные контейнеры. Вопросы производительности операций.
- •31. Процесс разработки по. Цели и этапы проектирования.
- •32. Процесс разработки по. Выявление классов. Определение операций.
- •33. Процесс разработки по. Определение взаимосвязей. Определение интерфейсов.
- •Этап 3: выявление зависимостей
- •Этап 4: определение интерфейсов
- •34. Паттерны проектирования. Основные паттерны.
- •35. Тестирование по. Методы тестирования.
9. Вложенные классы. Внутреннее и внешнее определение.
Вложенные классы
Описание класса может быть вложенным. Например:
class set { struct setmem { int mem; setmem* next; setmem(int m, setmem* n) { mem=m; next=n; } }; setmem* first; public: set() { first=0; } insert(int m) { first = new setmem(m,first); } // ... };
Доступность вложенного класса ограничивается областью видимости лексически объемлющего класса:
setmem m1(1,0); // ошибка: setmem не находится // в глобальной области видимости
Если только описание вложенного класса не является совсем простым, то лучше описывать этот класс отдельно, поскольку вложенные описания могут стать очень запутанными:
class setmem { friend class set; // доступно только для членов set int mem; setmem* next; setmem(int m, setmem* n) { mem=m; next=n; } // много других полезных членов }; class set { setmem* first; public: set() { first=0; } insert(int m) { first = new setmem(m,first); } // ... };
Полезное свойство вложенности - это сокращение числа глобальных имен, а недостаток его в том, что оно нарушает свободу использования вложенных типов (см. $$12.3).
Имя класса-члена (вложенного класса) можно использовать вне описания объемлющего его класса так же, как имя любого другого члена:
class X { struct M1 { int m; }; public: struct M2 { int m; }; M1 f(M2); }; void f() { M1 a; // ошибка: имя `M1' вне области видимости M2 b; // ошибка: имя `M1' вне области видимости X::M1 c; // ошибка: X::M1 частный член X::M2 d; // нормально }
Отметим, что контроль доступа происходит и для имен вложенных классов.
В функции-члене область видимости класса начинается после уточнения X:: и простирается до конца описания функции. Например:
M1 X::f(M2 a) // ошибка: имя `M1' вне области видимости { /* ... */ } X::M1 X::f(M2 a) // нормально { /* ... */ } X::M1 X::f(X::M2 a) // нормально, но третье уточнение X:: излишне { /* ... */ }
Внутренний, или вложенный класс (англ. inner class) — в объектно-ориентированном программировании класс, целиком определённый внутри другого класса.
10. Шаблоны классов
В этой главе описывается, как определять и использовать шаблоны классов. Шаблон - это предписание для создания класса, в котором один или несколько типов либо значений параметризованы. Начинающий программист может использовать шаблоны, не понимая механизма, стоящего за их определениями и конкретизациями. Фактически на протяжении всей этой книги мы пользовались шаблонами классов, которые определены в стандартной библиотеке C++ (например, vector, list и т.д.), и при этом не нуждались в детальном объяснении механизма их работы. Только профессиональные программисты определяют собственные шаблоны классов и пользуются описанными в данной главе средствами. Поэтому этот материал следует рассматривать как введение в более сложные аспекты C++.
Глава 16 содержит вводные и продвинутые разделы. Во вводных разделах показано, как определяются шаблоны классов, иллюстрируются простые способы применения и обсуждается механизм их конкретизации. Мы расскажем, как можно задавать в шаблонах разные виды членов: функции-члены, статические данные-члены и вложенные типы. В продвинутых разделах представлен материал, необходимый для написания приложений промышленного уровня. Сначала мы рассмотрим, как компилятор конкретизирует шаблоны и какие требования в связи с этим предъявляются к организации нашей программы. Затем покажем, как определять специализации и частичные специализации для шаблона класса и для его члена. Далее мы остановимся на двух вопросах, представляющих интерес для проектировщиков: как разрешаются имена в определениях шаблона класса и как можно определять шаблоны в пространствах имен. Завершается эта глава примером определения и использования шаблона класса.
16.1. Определение шаблона класса
Предположим, что нам нужно определить класс, поддерживающий механизм очереди. Очередь - это структура данных для хранения коллекции объектов; они помещаются в конец очереди, а извлекаются из ее начала. Поведение очереди описывают аббревиатурой FIFO - "первым пришел, первым ушел". (Определенный в стандартной библиотеке C++ тип, реализующий очередь, упоминался в разделе 6.17. В этой главе мы создадим упрощенный тип для знакомства с шаблонами классов.)
Необходимо, чтобы наш класс Queue поддерживал следующие операции:
1. добавить элемент в конец очереди:
void add( item );
1. удалить элемент из начала очереди:
item remove();
1. определить, пуста ли очередь:
bool is_empty();
1. определить, заполнена ли очередь:
bool is_full();
Определение Queue могло бы выглядеть так:
class Queue {
public:
Queue();
~Queue();
Type& remove();
void add( const Type & );
bool is_empty();
bool is_full();
private:
// ...
};
Вопрос в том, какой тип использовать вместо Type? Предположим, что мы решили реализовать класс Queue, заменив Type на int. Тогда Queue может управлять коллекциями объектов типа int. Если бы понадобилось поместить в очередь объект другого типа, то его пришлось бы преобразовать в тип int, если же это невозможно, компилятор выдаст сообщение об ошибке:
Queue qObj;
string str( "vivisection" );
qObj.add( 3.14159 ); // правильно: в очередь помещен объект 3
qObj.add( str ); // ошибка: нет преобразования из string в int
Поскольку любой объект в коллекции имеет тип int, то язык C++ гарантирует, что в очередь можно поместить либо значение типа int, либо значение, преобразуемое в такой тип. Это подходит, если предстоит работа с очередями объектов только типа int. Если же класс Queue должен поддерживать также коллекции объектов типа double, char, комплексные числа или строки, подобная реализация оказывается слишком ограничительной.
Конечно, эту проблему можно решить, создав копию класса Queue для работы с типом double, затем для работы с комплексными числами, затем со строками и т.д. А поскольку имена классов перегружать нельзя, каждой реализации придется дать уникальное имя: IntQueue, DoubleQueue, ComplexQueue, StringQueue. При необходимости работать с другим классом придется снова копировать, модифицировать и переименовывать.
Такой метод дублирования кода крайне неудобен. Создание различных уникальных имен для Queue представляет лексическую сложность. Имеются и трудности администрирования: любое изменение общего алгоритма придется вносить в каждую реализацию класса. В общем случае процесс ручной генерации копий для индивидуальных типов никогда не кончается и очень сложен с точки зрения сопровождения.
К счастью, механизм шаблонов C++ позволяет автоматически генерировать такие типы. Шаблон класса можно использовать при создании Queue для очереди объектов любого типа. Определение шаблона этого класса могло бы выглядеть следующим образом:
template <class Type>
class Queue {
public:
Queue();
~Queue();
Type& remove();
void add( const Type & );
bool is_empty();
bool is_full();
private:
// ...
};
Чтобы создать классы Queue, способные хранить целые числа, комплексные числа и строки, программисту достаточно написать:
Queue<int> qi;
Queue<complex<double>> qc;
Queue qs;
Реализация Queue представлена в следующих разделах с целью иллюстрации определения и применения шаблонов классов. В реализации используются две абстракции шаблона:
сам шаблон класса Queue предоставляет описанный выше открытый интерфейс и пару членов: front и back. Очередь реализуется с помощью связанного списка;
шаблон класса QueueItem представляет один узел связанного списка Queue. Каждый помещаемый в очередь элемент сохраняется в объекте QueueItem, который содержит два члена: value и next. Тип value будет различным в каждом экземпляре класса Queue, а next - это всегда указатель на следующий объект QueueItem в очереди.
Прежде чем приступать к детальному изучению реализации этих шаблонов, рассмотрим, как они объявляются и определяются. Вот объявление шаблона класса QueueItem:
template <class T>
class QueueItem;
Как объявление, так и определение шаблона всегда начинаются с ключевого слова template. За ним следует заключенный в угловые скобки список параметров шаблона, разделенных запятыми. Список не бывает пустым. В нем могут быть параметры-типы, представляющие некоторый тип, и параметры-константы, представляющие некоторое константное выражение.
Параметр-тип шаблона состоит из ключевого слова class или typename (в списке параметров они эквивалентны), за которым следует идентификатор. (Ключевое слово typename не поддерживается компиляторами, написанными до принятия стандарта C++. В разделе 10.1 подробно объяснялось, зачем это слово было добавлено в язык.) Оба ключевых слова обозначают, что последующее имя параметра относится к встроенному или определенному пользователем типу. Например, в приведенном выше определении шаблона QueueItem имеется один параметр-тип T. Допустимым фактическим аргументом для T является любой встроенный или определенный пользователем тип, такой, как int, double, char*, complex или string.
У шаблона класса может быть несколько параметров-типов:
template <class T1, class T2, class T3>
class Container;
Однако ключевое слово class или typename должно предшествовать каждому. Следующее объявление ошибочно:
// ошибка: должно быть <typename T, class U> или
// <typename T, typename U>
template <typename T, U>
class collection;
Объявленный параметр-тип служит спецификатором типа в оставшейся части определения шаблона и употребляется точно так же, как любой встроенный или определенный пользователем тип в обычном определении класса. Например, параметр-тип можно использовать для объявления данных и функций-членов, членов вложенных классов и т.д.
Не являющийся типом параметр шаблона представляет собой обычное объявление. Он показывает, что следующее за ним имя - это потенциальное значение, употребляемое в определении шаблона в качестве константы. Так, шаблон класса Buffer может иметь параметр-тип, представляющий типы элементов, хранящихся в буфере, и параметр-константу, содержащий его размер:
template <class Type, int size>
class Buffer;
За списком параметров шаблона следует определение или объявление класса. Шаблон определяется так же, как обычный класс, но с указанием параметров:
template <class Type>
class QueueItem {
public:
// ...
private:
// Type представляет тип члена
Type item;
QueueItem *next;
};
В этом примере Type используется для обозначения типа члена item. По ходу выполнения программы вместо Type могут быть подставлены различные встроенные или определенные пользователем типы. Такой процесс подстановки называется конкретизацией шаблона.
Имя параметра шаблона можно употреблять после его объявления и до конца объявления или определения шаблона. Если в глобальной области видимости объявлена переменная с таким же именем, как у параметра шаблона, то это имя будет скрыто. В следующем примере тип item равен не double, а типу параметра:
typedef double Type;
template <class Type>
class QueueItem {
public:
// ...
private:
// тип Item - не double
Type item;
QueueItem *next;
};
Член класса внутри определения шаблона не может быть одноименным его параметру:
template >class Type>
class QueueItem {
public:
// ...
private:
// ошибка: член не может иметь то же имя, что и
// параметр шаблона Type
typedef double Type;
Type item;
QueueItem *next;
};
Имя параметра шаблона может встречаться в списке только один раз. Поэтому следующее объявление компилятор помечает как ошибку:
// ошибка: неправильное использование имени параметра шаблона Type
template <class Type, class Type>
class container;
Такое имя разрешается повторно использовать в объявлениях или определениях других шаблонов:
// правильно: повторное использование имени Type в разных шаблонах
template <class Type>
class QueueItem;
template
class Queue;
Имена параметров в опережающем объявлении и последующем определении одного и того же шаблона не обязаны совпадать. Например, все эти объявления QueueItem относятся к одному шаблону класса:
// все три объявления QueueItem
// относятся к одному и тому же шаблону класса
// объявления шаблона
template <class T> class QueueItem;
template <class U> class QueueItem;
// фактическое определение шаблона
template <class Type>
class QueueItem { ... };
У параметров могут быть аргументы по умолчанию (это справедливо как для параметров-типов, так и для параметров-констант) - тип или значение, которые используются в том случае, когда при конкретизации шаблона фактический аргумент не указан. В качестве такого аргумента следует выбирать тип или значение, подходящее для большинства конкретизаций. Например, если при конкретизации шаблона класса Buffer не указан размер буфера, то по умолчанию принимается 1024:
template <class Type, size = 1024>
class Buffer;
В последующих объявлениях шаблона могут быть заданы дополнительные аргументы по умолчанию. Как и в объявлениях функций, если для некоторого параметра задан такой аргумент, то он должен быть задан и для всех параметров, расположенных в списке правее (даже в другом объявлении того же шаблона):
template <class Type, size = 1024>
class Buffer;
// правильно: рассматриваются аргументы по умолчанию из обоих объявлений
template <class Type=string, int size>
class Buffer;
(Отметим, что аргументы по умолчанию для параметров шаблонов не поддерживаются в компиляторах, реализованных до принятия стандарта C++. Чтобы примеры из этой книги, в частности из главы 12, компилировались большинством современных компиляторов, мы не использовали такие аргументы.)
Внутри определения шаблона его имя можно применять как спецификатор типа всюду, где допустимо употребление имени обычного класса. Вот более полная версия определения шаблона QueueItem:
template <class Type>
class QueueItem {
public:
QueueItem( const Type & );
private:
Type item;
QueueItem *next;
};
Обратите внимание, что каждое появление имени QueueItem в определении шаблона - это сокращенная запись для
QueueItem<Type>
Такую сокращенную нотацию можно употреблять только внутри определения QueueItem (и, как мы покажем в следующих разделах, в определениях его членов, которые находятся вне определения шаблона класса). Если QueueItem применяется как спецификатор типа в определении какого-либо другого шаблона, то необходимо задавать полный список параметров. В следующем примере шаблон класса используется в определении шаблона функции display. Здесь за именем шаблона класса QueueItem должны идти параметры, т.е. QueueItem<Type>.
template <class Type>
void display( QueueItem<Type> &qi )
{
QueueItem<Type> *pqi = &qi;
// ...
}