
- •Раздел 2.
- •1. Анализ данных повторных и сравнительных исследований. Различие стратегий исследования при качественном и количественном подходах.
- •3. Виды анализа документов в прикладном социологическом исследовании.
- •3.2 Основные недостатки контент-анализа
- •5. Особенности, преимущества, недостатки наблюдения. Достоинства и недостатки метода наблюдения
- •7. Виды наблюдения в прикладном социологическом исследовании.
- •9. Классификация социальных экспериментов в социологии.
- •10. 31Восходящая и нисходящая стратегии анализа данных.
- •Вопрос 13. "жесткий" анализ эмпирических данных
- •1. Группировка и эмпирическая типологизация
- •2. Теоретическая типологизация и ее проверка в эмпирическом анализе
- •3. Поиск взаимосвязей между переменными
- •Участие в инновациях как следствие статуса работников
- •Активность персонала в зависимости от статуса работника
- •Модель перекрестной группировки двух дихотомических признаков ПиР для расчета коэффициента ассоциации Юла (q)
- •Взаимосвязь интересов телезрителей к познавательным (п) и развлекательным (р) программам
- •Взаимосвязь между уровнем образования (о) и интересом к познавательным программам (п), между уровнем образования и интересом к развлекательным программам (р)
- •Матрица интеркорреляций пяти переменных (а, в, с, d, е)
- •20. Понятие и виды экспертного опроса, применяемые в социологическом исследовании.
- •23. Содержание и последовательность операций в количественном и качественном исследованиях. В количественном и качественном исследованиях [8]
- •24. Структура научного отчета по результатам исследования.
- •26. Этапы преобразования и анализа данных.
- •15. Логика типологического анализа.
- •17. Методы подбора экспертов для проведения экспертизы.
- •27. Выборочный метод в социологии, ошибка выборки, основные понятия (генеральная совокупность, выборочная совокупность и д.Р.).
- •28. Случайные методы отбора.
- •3.1.3 Вычисление ошибки репрезентативности для собственно случайной выборки.
- •Формулы ошибки репрезентативности для собственно случайного отбора.[3, 16]
- •3.1.4 Определение объема выборки.
- •Формулы для определения объема выборки при собственно случайном отборе.
- •3.1.5 Плюсы и минусы собственно случайной выборки.
- •29. Неслучайные методы отбора. Выборочные методы с внедрением элемента неслучайности.
- •4.1 Механическая выборка.
- •4.1.1 Практическая реализация.
- •4.1.2 Вычисление ошибки выборки.
- •4.1.3 Определение объема выборки.
- •4.1.4 Плюсы и минусы механического отбора.
- •Возможные выборки при механическом отборе.
- •Возможные выборки при механическом отборе.
- •4.2 Стратифицированная (районированная) выборка.
- •4.2.1 Практическая реализация.
- •4.2.2 Вычисление ошибки выборки.
- •Формулы ошибки репрезентативности для стратифицированной выборки (пропорциональный отбор). [3, 22]
- •Формулы ошибки репрезентативности для стратифицированной выборки (непропорциональный отбор). [3, 24]
- •Формулы ошибки репрезентативности для стратифицированной выборки (пропорционально колеблемости признака в группах). [3, 26]
- •4.2.3 Определение объема выборки.
- •Формулы для определения объема выборки при пропорциональном стратифицированном отборе.
- •Формулы для определения объема выборки при стратифицированном отборе пропорционально колеблемости признака в группе.
- •4.2.4 Плюсы и минусы стратифицированного отбора.
- •Распределение респондентов по стратам.
- •Распределение респондентов по стратам.
- •Распределение респондентов по стратам.
- •4.3 Гнездовая (серийная) выборка.
- •4.3.1 Практическая реализация.
- •4.3.2 Вычисление ошибки выборки.
- •Формулы ошибки репрезентативности для стратифицированной выборки. [3, 29]
- •4.3.3 Определение объема выборки.
- •Формулы для определения объема выборки при гнездовом отборе.
- •4.3.4 Плюсы и минусы этого метода.
- •Распределение респондентов по группам.
- •Распределение респондентов по группам.
- •5. Неслучайные (невероятностные) методы отбора.
- •5.1 Почему применяют неслучайный отбор?
- •5.2 Классификация методов неслучайного отбора.
- •5.2.1 Доступная выборка
- •5.2.2 Стихийная выборка.
- •5.2.3 Направленный отбор.
- •1. Метод типичных единиц.
- •2. Целевая выборка.
- •3. Квотный отбор.
- •30. Этапы проведения типологического анализа.
Участие в инновациях как следствие статуса работников
Статус |
Участие в инновациях (чел.) |
Итого |
|
|
участвуют |
не участвуют |
|
Рабочие |
35 |
65 |
100 |
ИГР |
64 |
46 |
100 |
Служащие |
29 |
71 |
100 |
Таблица 10, б
Активность персонала в зависимости от статуса работника
Статус |
Участие в инновациях (чел.) |
||
|
участвуют |
не участвуют |
|
Рабочие |
60 |
76 |
|
ИГР |
35 |
20 |
|
Служащие |
5 |
4 |
|
Итого |
100 |
100 |
(если данные представительны) можно подсчитать процентные доли всех 47 выделенных в ней сочетаний возрастных характеристик мужей и жен, из чего, скажем, следует, что более всего в изученной совокупности представлены молодые пары в возрасте 20—24 лет, каковые составляют около 55% от всех пар (504:1838/2= =0,55), среди 50-летних и старше супружеские пары одного возраста составляют лишь 5% и т. д.
Если выборка нерепрезентативна, процентирование можно вести только в рамках каждой подвыборки раздельно. Обычно такие подвыборки образуют по признакам, являющимся возможными причинами искомых связей: половозрастные, имущественные, этнической принадлежности, шкалы по уровню образования, другим объективным характеристикам социального статуса, места проживания и т. д. Здесь несоответствие долей выборок реальному распределению определенных групп в генеральной совокупности не исказит вывод (логика табл. 10, а). В противном же случае (по логике табл. 10, б) достоверность вывода будет прямо зависеть от представительности выборки.
Наконец, в случаях, когда представительность перекрестной классификации в принципе нельзя установить (например, о ценностных ориентациях и политических взглядах, отношений к партиям, где распределение в генеральной совокупности заранее вообще неизвестно), расчет процентов допустим в обоих направлениях и по диагонали с условием, что установленные связи требуют дополнительной проверки, ориентировочны. Для такой проверки используют систему так называемых контрольных (опосредующих) переменных.
Анализ взаимосвязи двух переменных с помощью контрольного (опосредующего) фактора — прием, используемый для того, чтобы установить прямые и опосредованные, причинные и сопутствующие связи, а также уточнить их напряженность. Рассмотрим три вымышленных примера, в которых проиллюстрируем основные логические проблемы этого метода.8
8 Задачи этого класса применительно к социологии были впервые сформулированы в 40-е гг. П. Лааарсфел ьдом и П. Кен дал л и получили в дальнейшем более полное логическое обоснование в работах X. Хеймана [339. С. 286—295].
Пример 1. Надо определить, имеется ли связь между интересом людей к познавательным программам телевидения (обозначим как фактор П) и к развлекательным программам (фактор Р). Для установления взаимосвязи между этими явлениями используем простейший показатель — коэффициент ассоциации двух качественных переменных по Юлу. Чтобы подсчитать коэффициент ассоциации Юла, достаточно фиксировать наличие (+) или отсутствие (-) каждого из двух сопоставляемых качеств А к В.
Построим двухмерную классификационную таблицу (схема 27).
Коэффициент ассоциации Юла (Q) высчитывается по формуле; Q=(ad - cb)/(ad - сb), где (схема 25) частоты а, b, с, d обозначают наличие или отсутствие признака П или Р. Свойства коэффициента: 1>Q>-1; Q=0, если какая-либо из частот (а, b, с или d) равны 0. При значении коэффициента существенно выше или ниже 0 при некотором доверительном интервале (допустимой ошибке) связь имеется.
Допустим, что в нашем примере наблюдается такое распределение (условные числа).
Схема 27