
- •Вопросы для подготовки к экзамену по теории игр в фк2(4-6)
- •1. Задачи принятия решения.
- •2. Классификация игр.
- •3. Задачи теории игр в экономике, финансах и бизнесе.
- •4. Основные понятия и определения теории антагонистических игр.
- •5. Выигрыш-функция и матрица выигрышей. Чистые стратегии игроков. Соотношение между матрицами выигрышей игроков а и в в парной антагонистической игре с нулевой суммой выигрышей.
- •7. Устойчивые и неустойчивые игровые ситуации. Игровые ситуации, удовлетворительные для игроков. Доказательство критериев об удовлетворительных ситуациях для игроков.
- •8. Равновесная ситуация. Седловая точка выигрыш-функции и седловая точка матрицы игры. Доказательство свойств равнозначности и взаимозаменяемости седловых точек матрицы игры.
- •10. Смешанные стратегии. Геометрическая интерпретация множества смешанных стратегий.
- •11. Определение выигрыш-функции в смешанных стратегиях; координатные и векторно-матричные формулы ее представления.
- •12. Определение и существование показателя эффективности смешанной стратегии игрока а относительно множеств смешанных и чистых стратегий игрока в.
- •13. Определение и существование показателя неэффективности смешанной стратегии игрока в относительно множеств смешанных и чистых стратегий игрока а.
- •14. Определения нижней и верхней цен игры в смешанных стратегиях и их существование; минимаксные и максиминные смешанные стратегии игроков.
- •15. Теорема о соотношении между нижней и верхней ценами игры в смешанных и чистых стратегиях. Теорема:
- •16. Цена игры в смешанных стратегиях. Оптимальные смешанные стратегии. Полное и частное решения игры в смешанных стратегиях.
- •17. Доказательство основной теоремы теории игр Дж. Фон Неймана.
- •18. Доказательство критерия оптимальных смешанных стратегий в терминах данной цены игры, выигрыш-функции и множеств смешанных стратегий игроков.
- •19. Доказательство критерия оптимальных смешанных стратегий в терминах данной цены игры, выигрыш-функции и множеств чистых стратегий игроков.
- •20. Доказательство следствия о геометрической интерпретации множества оптимальных смешанных стратеги
- •21. Доказательство критерия частного решения игры в смешанных стратегий.
- •22. Доказательство критерия цены игры и оптимальных смешанных стратегий в терминах множеств чистых стратегий игроков.
- •23. Понятие седловой точки функции. Критерий цены игры и оптимальных смешанных стратегий в терминах выигрыш-функции и ее седловых точек.
- •24. Определение и теорема об активных стратегиях. Спектр стратегии.
- •25. Определение и теорема о смесях активных чистых стратегий.
- •26. Принцип доминирования стратегий. Теорема и следствия о доминируемых стратегиях.
- •27. Принцип редуцирования матриц игры, основанный на разбиении ее на подматрицы с определенным свойством.
- •28. Изоморфное преобразования игры.
- •29. Зеркальный изоморфизм игры.
- •30. Аффинное преобразование игры.
- •31. Критерий седловой точки матрицы игры 22, основанный на принципе доминирования.
- •32. Доказательство критерия существования седловой точки в игре 22 в терминах пассивных стратегий.
- •33. Доказательство признака существования седловой точки в игре 22 в терминах сумм элементов главной и побочной диагоналей матрицы игры и его следствие.
- •34. Доказательство теоремы об аналитическом решении игры 22 без седловой точки в смешанных стратегиях и ее следствия для симметрической и двоякосимметрической матрицы игры.
- •35. Геометрический метод нахождения цены игры 22 и оптимальных стратегий игрока а.
- •36. Геометрический метод нахождения цены игры 22 и оптимальных стратегий игрока в.
- •37. Геометрический метод нахождения цены игры 2 и оптимальных стратегий игрока а.
- •38. Теорема об аналитическом методе нахождения цены игры 2 и оптимальных стратегий игрока а.
- •39. Доказательство теоремы об аналитическом методе нахождения цены игры 2 и оптимальных стратегий игрока в и её следствия.
- •40. Геометрический метод нахождения цены игры m2 и оптимальных стратегий игрока в.
- •41. Теорема об аналитическом методе нахождения цены игры m2 и оптимальных стратегий игрока а и её следствия.
- •43. Определение и теорема о симметричной матричной игре.
- •44. Теорема о сведении решения пары взаимно двойственных задач линейного программирования к решению симметричной матричной игры.
- •45. Игры с природой: сущность, основные понятия, экономические примеры.
- •46. Математическая модель игры с природой. Показатель благоприятности состояния природы. Матрица рисков.
- •47. Критерий Байеса оптимальности чистых стратегиях относительно выигрышей.
- •48. Критерий Лапласа оптимальности смешанных стратегий относительно выигрышей.
- •49. Критерий Вальда.
- •50. Критерий крайнего оптимизма.
- •51. Критерий крайнего пессимизма Сэвиджа.
- •52. Критерий пессимизма-оптимизма Гурвица оптимальности чистых стратегий относительно выигрышей.
46. Математическая модель игры с природой. Показатель благоприятности состояния природы. Матрица рисков.
Игра с природой — математическая модель ситуаций, когда осознанно действует только один игрок (обозначим его через А), принимающий решение, и когда исход игры зависит не только от решений игрока А, но и от состояния “природы” (обозначим через П), т. е. не от сознательно противодействующего противника, а от объективной, невраждебной действительности.
Природа – это:
1. объективная действительность;
2. игрок, но не противник игрока А, потому что не действует осознанно против игрока А, а принимает неопределенным образом то или иное свое состояние, не преследуя конкретной цели и безразлично к результату игры.
Статистик – игрок в игре с природой, действующий осознанно, т.е. лицо, принимающее решение (игрок А).
Одним из важных предположений в теории игр с природой является предположение о том, что в любой момент времени природа П может находиться только в одном (но неизвестно, в каком) из n состояний П1, П2, …, Пn, то есть состояния природы разделены между собой во времени. Совокупность состояний природы П формируется либо на основе имеющегося опыта анализа состояний природы, либо в результате предположений и интуиции экспертов.
Для описания игры с природой необходимо также множество стратегий игрока A: .
Результаты реализации стратегий при различных состояниях природы могут быть описаны матрицей V:
.
Будем предполагать, что в платёжной матрице игры представлены выигрыши лица, принимающего решения.
Показателем
благоприятности
состояния
природы для увеличения выигрыша
называется наибольший выигрыш при этом
состоянии, т.е. наибольший элемент в j-м
столбце матрицы игры:
,
,
Риском
игрока A
при выборе им стратегии
в условиях состояния
природы называется разность между
показателем благоприятности
состояния природы
и выигрышем
,
т.е. разность между выигрышем, который
игрок A
получил бы, если бы знал заранее, что
природа примет состояние
,
и выигрышем, который он получит при этом
же состоянии
,
выбрав стратегию
,
т.е.
.
Матрица рисков
47. Критерий Байеса оптимальности чистых стратегиях относительно выигрышей.
Пусть известны
состояния П1
… Пn
и вероятности q1
… qn
, с которыми
природа П реализует эти состояния. Тогда
мы находимся в ситуации принятия решения
в условиях риска. Показателем эффективности
стратегии
по критерию Байеса относительно выигрышей
называется среднее значение, или
математическое ожидание выигрыша i-й
строки с учётом вероятностей всех
возможных состояний природы:
,
.
Оптимальной среди
чистых
стратегий
по критерию Байеса относительно выигрышей
считается стратегия
с максимальным показателем эффективности:
(матрица выигрышей),
(матрица потерь).
Критерий Байеса относительно выигрышей и относительно рисков эквивалентны, т.е. если стратегия Sio является оптимальной по критерию Байеса относительно выигрышей, то она является оптимальной и по критерию Байеса относительно рисков, и наоборот.
Пример.
|
|
|
|
vi |
S1 |
2 |
6 |
4 |
4,6 |
S2 |
5 |
1 |
3 |
2,4 |
Для матрицы
выигрышей:
,
.
Для матрицы потерь:
,