
- •Вопросы для подготовки к экзамену по теории игр в фк2(4-6)
- •1. Задачи принятия решения.
- •2. Классификация игр.
- •3. Задачи теории игр в экономике, финансах и бизнесе.
- •4. Основные понятия и определения теории антагонистических игр.
- •5. Выигрыш-функция и матрица выигрышей. Чистые стратегии игроков. Соотношение между матрицами выигрышей игроков а и в в парной антагонистической игре с нулевой суммой выигрышей.
- •7. Устойчивые и неустойчивые игровые ситуации. Игровые ситуации, удовлетворительные для игроков. Доказательство критериев об удовлетворительных ситуациях для игроков.
- •8. Равновесная ситуация. Седловая точка выигрыш-функции и седловая точка матрицы игры. Доказательство свойств равнозначности и взаимозаменяемости седловых точек матрицы игры.
- •10. Смешанные стратегии. Геометрическая интерпретация множества смешанных стратегий.
- •11. Определение выигрыш-функции в смешанных стратегиях; координатные и векторно-матричные формулы ее представления.
- •12. Определение и существование показателя эффективности смешанной стратегии игрока а относительно множеств смешанных и чистых стратегий игрока в.
- •13. Определение и существование показателя неэффективности смешанной стратегии игрока в относительно множеств смешанных и чистых стратегий игрока а.
- •14. Определения нижней и верхней цен игры в смешанных стратегиях и их существование; минимаксные и максиминные смешанные стратегии игроков.
- •15. Теорема о соотношении между нижней и верхней ценами игры в смешанных и чистых стратегиях. Теорема:
- •16. Цена игры в смешанных стратегиях. Оптимальные смешанные стратегии. Полное и частное решения игры в смешанных стратегиях.
- •17. Доказательство основной теоремы теории игр Дж. Фон Неймана.
- •18. Доказательство критерия оптимальных смешанных стратегий в терминах данной цены игры, выигрыш-функции и множеств смешанных стратегий игроков.
- •19. Доказательство критерия оптимальных смешанных стратегий в терминах данной цены игры, выигрыш-функции и множеств чистых стратегий игроков.
- •20. Доказательство следствия о геометрической интерпретации множества оптимальных смешанных стратеги
- •21. Доказательство критерия частного решения игры в смешанных стратегий.
- •22. Доказательство критерия цены игры и оптимальных смешанных стратегий в терминах множеств чистых стратегий игроков.
- •23. Понятие седловой точки функции. Критерий цены игры и оптимальных смешанных стратегий в терминах выигрыш-функции и ее седловых точек.
- •24. Определение и теорема об активных стратегиях. Спектр стратегии.
- •25. Определение и теорема о смесях активных чистых стратегий.
- •26. Принцип доминирования стратегий. Теорема и следствия о доминируемых стратегиях.
- •27. Принцип редуцирования матриц игры, основанный на разбиении ее на подматрицы с определенным свойством.
- •28. Изоморфное преобразования игры.
- •29. Зеркальный изоморфизм игры.
- •30. Аффинное преобразование игры.
- •31. Критерий седловой точки матрицы игры 22, основанный на принципе доминирования.
- •32. Доказательство критерия существования седловой точки в игре 22 в терминах пассивных стратегий.
- •33. Доказательство признака существования седловой точки в игре 22 в терминах сумм элементов главной и побочной диагоналей матрицы игры и его следствие.
- •34. Доказательство теоремы об аналитическом решении игры 22 без седловой точки в смешанных стратегиях и ее следствия для симметрической и двоякосимметрической матрицы игры.
- •35. Геометрический метод нахождения цены игры 22 и оптимальных стратегий игрока а.
- •36. Геометрический метод нахождения цены игры 22 и оптимальных стратегий игрока в.
- •37. Геометрический метод нахождения цены игры 2 и оптимальных стратегий игрока а.
- •38. Теорема об аналитическом методе нахождения цены игры 2 и оптимальных стратегий игрока а.
- •39. Доказательство теоремы об аналитическом методе нахождения цены игры 2 и оптимальных стратегий игрока в и её следствия.
- •40. Геометрический метод нахождения цены игры m2 и оптимальных стратегий игрока в.
- •41. Теорема об аналитическом методе нахождения цены игры m2 и оптимальных стратегий игрока а и её следствия.
- •43. Определение и теорема о симметричной матричной игре.
- •44. Теорема о сведении решения пары взаимно двойственных задач линейного программирования к решению симметричной матричной игры.
- •45. Игры с природой: сущность, основные понятия, экономические примеры.
- •46. Математическая модель игры с природой. Показатель благоприятности состояния природы. Матрица рисков.
- •47. Критерий Байеса оптимальности чистых стратегиях относительно выигрышей.
- •48. Критерий Лапласа оптимальности смешанных стратегий относительно выигрышей.
- •49. Критерий Вальда.
- •50. Критерий крайнего оптимизма.
- •51. Критерий крайнего пессимизма Сэвиджа.
- •52. Критерий пессимизма-оптимизма Гурвица оптимальности чистых стратегий относительно выигрышей.
Вопросы для подготовки к экзамену по теории игр в фк2(4-6)
1. Задачи принятия решения.
Математизация содержательных финансово-эк-х задач о принятии решений в условиях неопределенности приводит к соответствующим эк-ко-мат-м моделям и методам, теоретический аспект которых составляет теорию игр. Таким образом, задачами теории игр в эк-ке явл-ся задачи о выборе реш-й в усл-х эк-й неопределенности.
Кроме того, теория игр используется для решения задач на принятие реш-я в области военного дела, биологии и социологии, психологии и политологии.
Существуют различные подходы к принятию решений – математический (теор игр) – один из них.
2. Классификация игр.
Классификация игр: 1)от воз-сти образования коалиций а)коалиционные – для макс. Коалиционного выигрыша, в) бескоалиционные – индивидуальный выигрыш; 2) по числу множественные – более 2х игроков, парные – 2 игрока. В парных играх игроки преследует противоположные цели – антагонистические (нулевая сумма выигрыша), игры с природой – один из игроков неосознанно –природа. В) мощность множества стратеги – а)конечные игры – если множество стратегий конечные, б) бесконечные – множество большее, чем четное.
3. Задачи теории игр в экономике, финансах и бизнесе.
Во многих задачах финансово-экономической сферы возникает Необх-ть принятия решения. Проблема принятия решения осложняется тем, что ее приходится решать в условиях неоп-ти.
Неопределенность может носить различный характер. Неопределенными могут быть осознанные действия противоборствующей стороны, направленные на уменьшение эфф-ти принимаемых противником решений. Например, такая ситуация наблюдается на рынке конкурирующих фирм.
Неопределенность может относиться к ситуации риска, в которой сторона, принимающая решение, в состоянии установить не только все возможные результаты всех решений, но и вероятности их появления. Эти вероятности – суть вероятности всевозможных условий, в которых решается данная задача. Эти условия влияют на принятие решений неосознанно, независимо от действий стороны, принимающей решения, и формируются из многих факторов (напр., состояние экономики).
В ситуации, когда известны все последствия всевозможных решений, но неизвестны их вероятности, т.е. неизвестны вероятности возможных состояний (условий) окружающей решаемую задачу среды, решение приходится принимать в условиях полной неоп-ти.
Наконец, неопределенностью может обладать цель решаемой задачи, когда пок-льэфф-ти решения характеризуется единственным числом и не всегда отражает достаточно полную картину.
Выбор решения в условиях неоп-ти всегда сопряжен с риском. Мат. методы обоснования решений дают возможность анализа вариантов решения с целью уменьшения риска, которое иногда достигается за счет получения дополнительной информации. В этом случае задача о выборе решения формулируется так: какова цена недостающей информации, приобретение которой позволит максимизировать экономический эффект всей операции?
Математизация задач о принятии решений в условиях неоп-ти приводит к экономико-математическим моделям и методам, теоретический аспект которых составляет теорию игр