Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по физике.docx
Скачиваний:
5
Добавлен:
01.04.2025
Размер:
1.52 Mб
Скачать

1.3 Законы сохранения в механике.

Закон сохранения импульса. Выясним, как изменяются импульсы двух тел при их взаимодействии.

Обозначим скорости тел массами m1 и m2 до взаимодействия через   и  , а после взаимодействия — через   и  .

По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению; поэтому их можно обозначить   и  .

Для изменений импульсов тел при их взаимодействии на основании равенства (16.2) можно записать

,

,

где t — время взаимодействия тел. Из этих выражений получаем

. (16.3)

Таким образом, векторная сумма импульсов двух тел до взаимодействия равна векторной сумме их импульсов после взаимодействия.

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих между собой тел при отсутствии действия сил со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел остается неизменной.

Система тел, не взаимодействующих с другими телами, не входящими в эту систему, называется замкнутой системой.

В замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса.

Необходимым условием применимости закона сохранения импульса к системе взаимодействующих тел является использование инерциальной системы отсчета.

Кинетическая энергия. Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела.

Кинетическая энергия тела обозначается буквой Eк:

. (19.2)

Тогда равенство (19.1) можно записать в таком виде:

. (19.3)

Работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела. Это утверждение называют теоремой о кинетической энергии.

Так как изменение кинетической энергии равно работе силы (19.3), кинетическая энергия выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения  , то работа силы равна конечному значению кинетической энергии тела:

. (19.4)

Кинетическая энергия тела массой m, движущегося со скоростью  , равна работе, которую должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

1.3.3 По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной[1] (называемой полевой переменной[2]), определенной во всех[3] точках пространства (и принимающей вообще говоря разные значения в разных точках пространства, к тому же меняющейся со временем[4]).

В квантовой теории поля — полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор[5] соответствующего названия.

Полевая парадигма, представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей[6].

  • Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы[7]) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления[8], а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации[9].

Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы.

Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда — величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

Также полем в физике называют физическую величину, рассматриваемую как зависящую от места, как полный набор вообще говоря разных значений для всех точек некоторого протяженного непрерывного тела - сплошной среды, описывающий в своей совокупности состояние или движение этого протяженного тела[10]. Примером такого поля может быть

  • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) — (скалярное) поле температуры,

  • скорость всех элементов некоторого объема жидкости — векторное поле скоростей,

  • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

Динамика таких полей также описывается дифференциальными уравнениями в частных производных, и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

Современная концепция физического поля выросла из идеи электромагнитного поля, впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем, математически же последовательно реализованной Максвеллом — изначально с использованием механической модели гипотетической сплошной среды — эфира, но затем вышедшей за рамки использования механической модели.

Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.

К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия.

Вычислим, например, работу, которую совершает сила тяжести при переходах частицы разными путями из положения 1 в положение 2 (рис. 6.2). Если этот переход произошёл по вертикали, то работа силы  :

                          .                  (6.11)

Теперь пусть та же частица переместится из 1 в 2 по пути 1-1’-2. Здесь промежуточная точка 1’ находится на высоте h2

Рис. 6.2

Полная работа будет складываться из работ силы тяжести на участках 1-1’ и 1’-2:

.

Работа силы тяжести на горизонтальном участке 1’-2 равна нулю, так как здесь вектор силы нормален перемещению. Мы вновь получили прежний результат, свидетельствующий о том, что работа силы тяжести не зависит от формы траектории. Этот вывод легко обобщается и на случай произвольной криволинейной траектории, соединяющей начальную и конечную точки пути.

Гравитационная сила, сила упругости, кулоновская сила электростатического взаимодействия относятся к так называемым центральным силам.

Центральными называются силы, направленные к одной и той же точке (либо от неё). Эта точка называется силовым центром. Величина центральной силы зависит только от расстояния до силового центра r (рис. 6.3). 

Рис. 6.3

Покажем, что все центральные силы консервативны.

Вычислим работу центральной силы на участке 1-2 произвольной траектории (рис. 6.3).

Элементарная работа силы на участке  :

.

Здесь dSr = dSCosα — проекция вектора перемещения   на направление силы   (или r). Эта проекция представляет собой изменение расстояния dr до силового центра. Значит:

dA = F(r)dr.

Работа на конечном пути:

.

Так как по определению величина центральной силы есть функция только расстояния r, то значение определённого интеграла будет зависеть только от величин r1 и r2, и не будет зависеть от формы траектории.

Можно дать иное определение консервативной силы.

Рассмотрим перемещение частицы из положения 1 в положение 3 под действием консервативной силы   (рис. 6.4). 

Рис. 6.4

Работа, совершаемая при этом силой  , не зависит формы от траектории, то есть  .

Теперь вычислим работу этой же силы на замкнутом пути 1-2-3-4-1. понятно, что её можно представить суммой работ на участках 1-2-3 и 3-4-1

.

При этом  .

Отсюда можно заключить, что работа консервативной силы по любому замкнутому пути равна нулю

.

Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.

 Закон сохранения механической энергии

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком: 

A = –(Eр2 – Eр1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел: 

Следовательно 

 или

Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.20.1 поясняет решение этой задачи.

Рисунок 1.20.1.

К задаче Христиана Гюйгенса.   – сила натяжения нити в нижней точке траектории

Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде: 

Обратим внимание на то, что сила   натяжения нити всегда перпендикулярна скорости тела; поэтому она не совершает работы.

При минимальной скорости вращения натяжение нити в верхней точке равно нулю и, следовательно, центростремительное ускорение телу в верхней точке сообщается только силой тяжести: 

Из этих соотношений следует: 

Центростремительное ускорение в нижней точке создается силами   и   направленными в противоположные стороны: 

Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно 

F = 6mg.

Прочность нити должна, очевидно, превышать это значение.

Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Диссипация энергии (лат. dissipatio — рассеяние) — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых условиях может быть введена диссипативная функция. Если диссипация энергии происходит в замкнутой системе, то энтропия системы возрастает. Диссипация энергии в открытых системах, обусловленная процессами уноса энергии из системы, например в виде излучения, может приводить к уменьшению энтропии рассматриваемой системы при увеличении полной энтропии системы и окружающей среды. Это, в частности, обеспечивает важную роль процессов диссипации энергии в уменьшении удельной энтропии вещества на стадиях образования галактик и звёзд в модели горячей Вселенной.