
- •Постоянный электрический ток
- •Классическая теория электропроводности металлов.
- •Вывод законов Ома и Джоуля – Ленца.
- •Трудности классической теории
- •Зонная теория твердых тел.
- •Деление твердых тел на металлы, полупроводники и изоляторы.Понятие о статистике Ферми – Дирака.
- •Объяснение электропроводности и теплоемкости металлов.
- •Полупроводники.Собственная и примесная проводимость полупроводников.
- •Электромагнетизм
- •Магнитное поле и его характеристики: напряженность и индукция, связь между ними.
- •Закон Био – Савара – Лапласа и его применение для расчета магнитных полей: поле бесконечного прямого проводника с током, поле кругового проводника с током.
- •Циркуляция вектора магнитной индукции по замкнутому контуру – закон полного тока.
- •Применение закона полного тока для расчета магнитного поля соленоида и тороида.
- •Взаимодействие параллельных токов. Сила, действующая на проводник с током в магнитном поле, закон Ампера.
- •Эффект Холла
- •Магнитный момент контура с током.
- •Контур с током в магнитном поле.
- •Магнитный поток. Поток вектора магнитной индукции через замкнутую поверхность.
- •Работа, совершаемая при перемещении проводника с током и контура с током в магнитном поле.
- •18. Действие магнитного поля на движущийся заряд – сила Лоренца.
- •19.Движение заряженных частиц в магнитном поле. Ускорители заряженных частиц.
- •20.Явление электромагнитной индукции. Правило Ленца. Э.Д.С. Индукции – закон Фарадея. Вихревые токи.
- •22. Индуктивность контура. Индуктивность соленоида. Явление самоиндукции
- •23.Токи при размыкании и замыкании цепи.
- •24. Трансформаторы
- •25. Энергия магнитного поля.
- •26. Магнитные моменты электронов атомов.
- •28.Магнитные свойства вещества: намагниченность, магнитная восприимчивость вещества.
- •30. Диамагнетики. Парамагнетики.
- •31.Ферромагнетики и их свойства.
- •32.Природа ферромагнетизма. Антиферромагнетики. Ферримагнетики, ферриты.
- •Основы теории электромагнитного поля
- •33. Электрические колебания. Свободные электрические колебания. Затухающие электрические колебания.
- •34. Переменный ток. Индуктивное и емкостное сопротивление. Полное сопротивление цепи.
- •35.Резонанс токов и напряжений.
- •36.Вихревое электрическое поле.
- •Ток смещения.
- •38.Электромагнитное поле. Уравнения Максвелла для электромагнитного поля.
- •39.Электромагнитные волны, их свойства. Плоская электромагнитная волна.
- •Энергия и импульс электромагнитной волны.
- •Основы оптики
- •Основные законы геометрической оптики. Полное внутреннее отражение. Оптическая длина пути.
- •42.Принцип Ферма. Линзы.
- •43.Основные фотометрические единицы.
- •44.Свет как электромагнитная волна.
- •45.Интерференция света
- •46. Интерференция от двух когерентных источников – опыт Юнга.
- •47. Интерференция при отражении от плоскопараллельной пластины
- •48.Кольца Ньютона.
- •49. Дифракция света. Принцип Гюйгенса – Френеля.
- •50. Метод зон Френеля
- •51.Дифракция от круглого отверстия. Дифракция от круглого диска.
- •52.Дифракция Фраунгофера от щели.
- •53.Дифракционная решетка. Дифракция рентгеновских лучей.
- •54. Поляризация света. Плоскополяризованный свет. Закон Малюса. Вращение плоскости поляризации.
- •55.Поляризация при отражении и преломлении на границе двух диэлектриков. Закон Брюстера. Двойное лучепреломление.
- •Дисперсия света
- •57. Поглощение света
- •Квантовая природа излучения
- •58.Тепловое излучение. Энергетическая светимость – излучательность. Спектральная плотность излучательности, спектральная поглощательная способность. Абсолютно черное тело.
- •59.Закон Кирхгофа
- •60. Закон Стефана – Больцмана. Закон смещения Вина. Второй закон Вина.
- •61.Формула Рэлея-Джинса. Ультрафиолетовая катастрофа. Гипотеза м. Планка о световых квантах. Формула Планка для распределения энергии в спектре абсолютно черного тела.
- •62.Фотоэффект и его законы.
- •63.Формула Эйнштейна для фотоэффекта.
- •64.Фотоны. Корпускулярно – волновой дуализм света.
- •65.Эффект Комптона.
- •Основы атомной физики
- •66.Закономерности в атомных спектрах. Опыты Резерфорда по рассеянию альфа – частиц. Планетарная модель атома и ее несостоятельность с точки зрения классической физики.
- •68.Постулаты Бора. Боровская теория атома водорода.
- •69.Гипотеза де Бройля о корпускулярно – волновом дуализме микрочастиц. Волны де Бройля.
- •70.Принцип неопределенности и соотношение неопределенности Гейзенберга.
- •71. Принцип дополнительности Бора.
- •72. Движение частиц в потенциальной яме
- •73. Волновая функция и ее физический смысл.
- •74.Уравнение Шредингера.
- •75. Квантово – механическая теория атома водорода.
- •76.Квантовые числа.
- •77.Принцип запрета Паули. Распределение электронов в атоме.
- •78.Периодическая система элементов д. И. Менделеева.
- •79.Излучение атомов: оптическое, рентгеновское, вынужденное. Лазеры.
- •Физика атомного ядра
- •80.Характеристики атомного ядра
- •81.Энергия связи. Природа ядерных сил.
- •Радиоактивность.
- •83. Закон радиоактивного распада.
- •84.Виды радиоактивности: альфа – распад, бета – распады, гамма – излучение. Дозы излучения: экспозиционная, поглощенная, эквивалентная
- •85.Ядерные реакции.
- •86. Ядерные реакции под действием нейтронов.
- •87. Реакция деления ядер и цепная реакция.
- •88.Термоядерная реакция
- •Физика элементарных частиц
- •89.Фундаментальные физические взаимодействия. Характеристики элементарных частиц
- •90. Классификация элементарных частиц. Лептоны и адроны.
- •91. Частицы – переносчики взаимодействий. Античастицы.
- •Кварковая модель адронов.
30. Диамагнетики. Парамагнетики.
Всякое вещество является магнетиком, т. е. оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Для понимания механизма этого явления необходимо рассмотреть действие магнитного поля на движущиеся в атоме электроны.Если орбита электрона ориентирована относительно вектора В произвольным образом, составляя с ним угол (рис. 188), то можно доказать, что она приходит в такое движение вокруг В, при котором вектор магнитного момента рm, сохраняя постоянным угол , вращается вокруг вектора В с некоторой угловой скоростью. Такое движение в механике называется прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения. Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круговому току. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется составляющая магнитного поля, направленная противоположно внешнему полю. Наведенные составляющие магнитных полей атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.В отсутствие внешнего магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома (он равен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (например, Bi, Ag, Au, Сu), большинство органических соединений, смолы, углерод и т. д.Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными веществами существуют и парамагнитные — вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. При внесении парамагнетика во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля да нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. К парамагнетикам относятся редкоземельные элементы, Pt, Аl и т.д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и поэтому остается незаметным.Из рассмотрения явления парамагнетизма следует, что его объяснение совпадает с объяснением ориентационной (дипольной) поляризации диэлектриков с полярными молекулами (см. § 87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.