
- •2.3. Механизм и термодинамика процесса растворения
- •2.4. Концентрация растворов и способы ее выражения.
- •3.2. Классификация буферных систем:
- •3.4. Кислотный буфер:
- •3.5. Буферные системы крови:
- •3.5. Понятие о кислотно-основном состоянии (кос) организма.
- •4.1. Основные положения координационной теории Вернера. Дентатность лигандов. Классификация комплексных соединений.
- •4.3. Классификация комплексных соединений.
- •4.4 Номенклотура комплексных соединений
- •Строение гемоглобина, хлорофилла.
- •4.6. Представления о строении металлоферментов и других биокомплексных соединений (цитохромы, цианкобаламин).
- •4.7. Диссоциация комплексных соединений. Константа нестойкости. Инертные и лабильные комплексы.
- •5.1 Предмет и методы химической термодинамики. Взаимосвязь между процессами обмена веществ и энергии в организме. Химическая термодинамика как теоретическая основа биоэнергетики.
- •6) Типы систем.
- •7) Процессы
- •1)Второе начало термодинамики
- •5.6. Химическое равновесие. Обратимые и необратимые по направлению реакции.
- •4.8. Металло-лигандный гомеостаз и причины его нарушения.
- •4.9. Комплексные соединения в природе, организме человека, комплексные соединения как лекарственные средства.
- •5.7. Термодинамические условия равновесия в изолированных и закрытых системах.
- •6.2. Понятие об активных молекулах; энергия активации: уравнение Аррениуса. Энергетическая диаграмма реакции. Роль стерического фактора. Понятие о теории переходного состояния.
- •6.3. Скорость реакции, средняя скорость реакции в интервале, истинная скорость. Методы определения скорости реакции.
- •6.6 Катализ. Гомогенный и гетерогенный катализ. Энергетический профиль каталитической реакции. Особенности каталитической активности ферментов. Уравнение Михаэлиса - Ментен и его анализ.
- •6.7 Физические и химические процессы, происходящие при хранении лекарств. Влияние условий получения, хранения и транспортировки на стабильность лекарственных веществ. Сроки годности лекарств.
- •7.1. Адсорбционные равновесия и процессы на подвижных границах раздела фаз. Поверхностная энергия Гибса и поверхностное натяжение.
- •7.2. Сорбция, адсорбция, абсорбция, капиллярная конденсация, адсорбент, адсорбат
- •7.3. Изотерма адсорбции. Уравнение Гиббса.
- •7.4. Поверхностно активные и поверхностно неактивные вещества. Изменение поверхностной активности в гомологических рядах (Правило Траубе).
- •7.5. Ориентация молекул в поверхностном слое и структура биомембран
- •7.6. Адсорбционные равновесия на неподвижных границах раздела фаз. Физическая адсорбция и хемосорбция. Адсорбция газов на твердых телах. Зависимость величины адсорбции от различных факторов.
- •7.8. Значение адсорбционных процессов для жизнедеятельности. Физико-химические основы адсорбционной терапии, гемосорбции, применение в медицине ионитов.
- •8. Биологически активные высокомолекулярные вещества
- •8.1. Полимеры. Понятие о полимерах медицинского (стоматологического) назначения.
- •8.2. Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •8.3. Механизм набухания и растворения вмс. Зависимость величины набухания от различных факторов.
- •8.4. Аномальная вязкость растворов вмс. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей.
- •Классификация органических реакций по количеству исходных и конечных веществ и характеру реагентов: 1. Реакции по способу разрыва и образования связей:
- •2. Реакции по направлению:
- •4) Перегруппировки (происходит миграция атомов или групп атомов от одного атома к другому)
5.6. Химическое равновесие. Обратимые и необратимые по направлению реакции.
При химическом равновесии скорости прямой и обратной реакций равны. При этом также наблюдается постоянство равновесных молярных концентраций (обозначается в квадратных скобках [H2]) или парциальных давлений равновесных исходных и конечных веществ (обозначается р0Х).
Константа химического равновесия обратимого процесса равна отношению произведения равновесных молярных концентраций газообразных веществ конечных продуктов к произведению
равновесных молярных концентраций газообразных веществ исходных веществ, возведенных в степени, равные стехиометрическим коэффициентам при формулах соответствующих веществ в уравнении химической реакции.
K=[D]d[F]f / [A]a[B]b
Принцип сдвига химического равновесия, принцип Ле-Шателье
Принцип Ле-Шателье (принцип сдвига равновесия): если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в таком направлении, которое ослабляет внешнее воздействие.
1. Чтобы сдвинуть равновесие в сторону исходных веществ (вправо), нужно увеличить их концентрацию.
2. При увеличении температуры равновесие сдвигается в сторону эндотермического процесса (вправо).
3. Увеличение давления сдвигает равновесие в сторону образования меньших объемов (меньшего количества моль)
Повышение концентрации исходных веществ приводит к самопроизвольному протеканию прямой реакции. (повышению концентрации продуктов)
Повышение концентрации продуктов реакции приводит к самопроизвольному протеканию обратной реакции. ( повышению концентрации исходных веществ)
Необратимыми называются реакции, которые протекают только в одном направлении и
завершаются полным превращением исходных веществ в конечные продукты. Большинство
химических реакций являются необратимыми. BaCl2 + H2SО4 = BaSО4 + 2HCI
Обратимые по направлению химические реакции – те, которые при данных внешних
условиях могут самопроизвольно протекать как в прямом, так и в обратном направлении.
C6H12O6 + 6O2(г) = 6CO2 + 6H2O,
4.8. Металло-лигандный гомеостаз и причины его нарушения.
Возможны случаи нарушения металлолигандного гомеостаза организма. Для организма характерно поддержание на постоянном уровне концентрации ионов металлов и лигандов, то есть поддержание металлолигандного равновесия (металло-лигандного гомеостаза). Нарушение его возможно по ряду причин:
Первая причина. В организм поступают ионы токсиканта из окружающей среды (Be, Нg, Сd, Те, Рb, Sr и другие). Они образуют более прочные комплексные соединения с биолигандами, чем биометаллы. В результате более высокой химической активности и меньшей растворимости образующихся соединений, в узлах кристаллической решетки наряду Са5(РО4)3ОН и взамен его могут осаждаться соединения и других металлов: бериллия, кадмия, бария, стронция.
Вторая причина. В организм поступает микроэлемент, необходимый для жизнедеятельности организма, но в значительно больших концентрациях. Повышенное содержание меди в организме приводит к поражению ряда органов, вызывая (воспаление почек, печени, инфаркт миокарда, ревматизм, бронхиальную астму). Заболевания, вызванные повышенным содержанием меди в организме, называют гиперкупремиями, .быточное содержание пыли железа в легких приводит к развитию сидероза.
Третья причина. Нарушение баланса микроэлементов, возможно в результате не поступления или недостаточного поступления. Например, недостаток йода вызывает эндемическое увеличение щитовидной железы и зоба у людей и животных. Четвертая причина. Повышение концентрации токсичных комплексообразуюших групп, содержащих азот, фосфор, кислород и серу, способных образовывать прочные связи с ионами биометаллов (СО, CN-, –SH). В системе несколько лигандов и один ион металла способный образовывать комплексное соединение с данными лигандами. При этим наблюдаются конкурирующие процессы – конкуренция между лигандами за ион металла.
Пятая причина. Изменения степени окислении центрального атома микроэлемента или изменения конформационной структуры биокомплекса, изменения его способности к образованию водородных связей. Например, токсичное действие нитратов и нитритов проявляется и в том, что под их воздействием гемоглобин превращается в метгемоглобин, который не способен транспортировать кислород. Попадая в кровь, они приводят к гипоксии организма.