Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_na_zachet.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
893.44 Кб
Скачать

3.4. Кислотный буфер:

[H+ ] = Ка * Скисл / Ссоли

pH = pKa – lg Cкисл / Ссоли

Основный буфер:

[OH-] = KB * Сосн / Ссоли

pH = 14 – pKB + lg Cосн / Ссоли

3.5. Буферные системы крови:

1. гидрокарбонатная: угольная кислота и гидрокарбонат ион. Это система нейтрал.кислоты. Есть в плазме, эритроцитах, межклеточной жидкости, почечной ткани. Это наиболее важная буферная система крови. Ее особенность в том, что один из компонентов-угольная кислота образуется при взаимодействии растворенного в плазме CO2 c водой.

2. фосфатная: слабая кислота H2PO4- и сопряженного основания HPO42-. Есть в крови, клеточной жидкости, почках. В основе ее действия лежит кислотно-основное равновесие: H2PO4- <-> H+ + HPO42-. При избытке H+ происходит нейтрализация H2PO4.

3. гемоглобиновая: гемоглобин HHB и оксигемоглобин HHBO2.

H+ + HB <-> HHB ; H+ + HBO2 <-> HHBO2 <-> HHB + O2

4. белковая (протеиновая): состоит из «белка-основания» и «белка-соли». Эта система может нейтрализовать как кислые, так и основные продукты. В сравнение с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия. Белки плазмы крови, благодаря наличию кислотно-основных групп в молекулах белков, образуют буферную систему, наиболее эффективную в диапазоне pH 7,2-7,4.

3.5. Понятие о кислотно-основном состоянии (кос) организма.

Под кислотно-основным состоянием (КОС) подразумевается соотношение концентраций водородных (Н+) и гидроксильных (ОН) ионов в биологических средах. Необходимым условием существования живого организма является поддержание постоянства этого параметра внутренней среды. От величины рН зависят стабильность мембран, функции ферментов, диссоциация электролитов, нервно-мышечная возбудимость и проводимость, комплексообразование и другие процессы. Белковый, липидный, углеводный обмен является источником образования летучих (угольная) и нелетучих кислот (фосфорная, серная, пировиноградная, молочная и др.), часть из которых претерпевает дальнейшее окисление; небольшое количество кислых эквивалентов удаляется из организма в свободном состоянии или в виде солей. Основные соединения (ионы ОН , креатинин и др.) образуются в организме в значительно меньших количествах.

Тенденция к увеличению концентрации ионов Н+ (и, соответственно, снижению рН) традиционно называется ацидозом; тенденция к снижению концентрации ионов Н+ (повышению рН) получила название «алкалоз». Значения рН крови ниже 6,8 и выше 8,0 считаются несовместимыми с жизнью и в клинике практически не встречаются.

Механизмы регуляции кислотно-основного состояния весьма эффективны и способны компенсировать значительные сдвиги рН.

4.1. Основные положения координационной теории Вернера. Дентатность лигандов. Классификация комплексных соединений.

Теория координационных соединений, предложенная А. Вернером в 1893 году, до сих пор является основной теорией координационных соединений (для комплексов определенного вида). Eе основные положения:

1. Большинство элементов проявляет два типа валентности – главную и побочную.

2. Атом элемента стремится насытить не только главные, но и побочные валентности.

3. Побочные валентности атома строго фиксированы в пространстве и определяют геометрию комплекса и его различные свойства.

Дентатность лиганда

Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных. К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие.

Некоторые распространенные лиганды типа молекул воды H2O, гидроксид-иона OH-, тиоцианат-иона NCS-, амид-иона NH2-, монооксида углерода CO в комплексах преимущественно монодентатны, хотя в отдельных случаях (в мостиковых структурах) становятся бидентатными.

Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными. Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения.

Полидентатные лиганды могут выступать в роли мостиковых лигандов, объединяющих два и более центральных атома.

Классификация комплексных соединений

Комплексные соединения делятся на ионные (их иногда называют ионогенными) и молекулярные (неионогенные) соединения. Ионные комплексные соединения содержат заряженные комплексные частицы – ионы – и являются кислотами, основаниями или солями. Молекулярные комплексные соединения состоят из незаряженных комплексных частиц (молекул)

По числу центральных атомов комплексные частицы делятся на одноядерные и многоядерные. Центральные атомы многоядерных комплексных частиц могут быть связаны между собой либо непосредственно, либо через лиганды. И в том, и в другом случае центральные атомы с лигандами образуют единую внутреннюю сферу комплексного соединения:

По типу лигандов комплексные частицы делятся на:

1) Аквакомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют молекулы воды. Более или менее устойчивы катионные аквакомплексы [M(H2O)n]m, анионные аквакомплексы неустойчивы

2) Гидроксокомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют гидроксильные группы, которые до вхождения в состав комплексной частицы были гидроксид-ионами

3) Аммиакаты, то есть комплексные частицы, в которых в качестве лигандов присутствуют группы NH3 (до образования комплексной частицы – молекулы аммиака)

4) Ацидокомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют кислотные остатки как бескислородных, так и кислородсодержащих кислот

5) Комплексы, в которых лигандами являются атомы водорода, делятся на две совершенно разные группы: гидридные комплексы и комплексы, входящие в состав ониевых соединений.

При образовании гидридных комплексов – [BH4], [AlH4], [GaH4] – центральный атом является акцептором электронов, а донором – гидридный ион. Степень окисления атомов водорода в этих комплексах равна –1.

В ониевых комплексах центральный атом является донором электронов, а акцептором – атом водорода в степени окисления +1.

6) Карбонильные комплексы – комплексы, в которых в качестве лигандов присутствуют группы CO

7) Анионгалогенатные комплексы – комплексы типа [I(I)2].

4.2. Природа химической связи в комплексных соединениях. Теория «жестких» и «мягких» реакционных центров. Механизм токсического действия тяжелых металлов и мышьяка на основе теории ЖМКО. Хелатотерапия.

Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Теория «жестких» и «мягких» реакционных центров.

Кислотно-основные взаимодействия протекают таким образом, что "жесткие" кислоты предпочтительно связываются с "жесткими" основаниями, а "мягкие" кислоты - с "мягкими" основаниями. При оценке "жесткости" и "мягкости" кислот и оснований учитывают их химический состав и электронное строение, а также сравнительную устойчивость образуемых ими кислотно-основных комплексов: А + :В D А : В, где А - кислота Льюиса, :В - основание, А : В - кислотно-основной комплекс. "Жесткие" кислоты - акцепторы с низкой поляризуемостью, высокой электроотрицательностью, трудно восстанавливаются, их незаполненные граничные орбитали имеют низкую энергию; "мягкие" кислоты - акцепторы с высокой поляризуемостью, низкой электроотрицательностью, легко восстанавливаются, их свободный граничные орбитали имеют высокую энергию. "Жесткие" основания - доноры с низкой поляризуемостью, высокой электроотрицательностью, трудно окисляются, их занятые граничные орбитали имеют низкую энергию; "мягкие" основания доноры с высокой поляризуемостью, низкой электроотрицательностью, легко окисляются, их занятые граничные орбитали имеют высокую энергию. Самая "жесткая" кислота - протон, самая "мягкая" CH3Hg+; наиболее "жесткие" основания - F и ОН - , наиболее "мягкие" I - и Н -. Сопоставление устойчивости кислотно-основных комплексов для различные оснований по отношению к Н+ и CH3Hg+ , a также для кислот по отношению к F - и I - позволило разделить известные кислоты и основания на группы

Предпочтительное связывание "жестко-жестких" и "мягко-мягких" реагентов в рамках теории возмущения объясняется тем, что взаимодействие между орбиталями с близкой энергией более эффективно, чем между орбиталями, разнящимися по энергии, т. е. подчеркивается преимущество электростатич. ("жестко-жесткого") или ковалентного ("мягко-мягкого") взаимодействия. Принцип ЖМКО используют для учета специфический взаимодействие и особенностей протекания конкурирующих процессов, для направленного создания экстрагентов, детоксикантов, лек. препаратов, а также объяснения преимуществ. типов связывания металлов в биохимический и геол. объектах. Принцип сформулирован Р. Пирсоном в 1963.

Механизм токсического действия тяжелых металлов и мышьяка на основе теории ЖМКО

(на примере солей бария) Все растворимые соли бария токсичны. Механизм действия этих солей заключается в том, что ионы Ва2 , имея одинаковый радиус с ионами К+, конкурирует с ним в биохимических процессах. В результате такой взаимозамещаемости возникает гипокалиемия; ионы бария могут проникать и в костные ткани, вызывая эпидемические заболевания (например, болезнь па-пинг).

Хелатотерапия.

Хелатотерапия – это выведение токсичных частиц из организма, основанное на хелатировании их комплексонатами s–элементов. Препараты, применяемые для выведения инкорпорированных в организме токсичных частиц, называют детоксикантами (Lg). Хелатирование токсичных частиц комплексонатами металлов (Lg) преобразуют токсичные ионы металлов (Мт) в нетоксичные (MтLg) связанные формы, подходящие для изоляции проникновения через мембраны,транспорта и выведения из организма. Комплексоны и комплексонаты переходных металлов обладают высокой эффективностью биологического действия, малотоксичны. Они сохраняют в организме хелатообразующий эффект как по лиганду (комплексону), так и по иону металла. Это обеспечивает металлолигандный гомеостаз организма.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]