- •2.3. Механизм и термодинамика процесса растворения
- •2.4. Концентрация растворов и способы ее выражения.
- •3.2. Классификация буферных систем:
- •3.4. Кислотный буфер:
- •3.5. Буферные системы крови:
- •3.5. Понятие о кислотно-основном состоянии (кос) организма.
- •4.1. Основные положения координационной теории Вернера. Дентатность лигандов. Классификация комплексных соединений.
- •4.3. Классификация комплексных соединений.
- •4.4 Номенклотура комплексных соединений
- •Строение гемоглобина, хлорофилла.
- •4.6. Представления о строении металлоферментов и других биокомплексных соединений (цитохромы, цианкобаламин).
- •4.7. Диссоциация комплексных соединений. Константа нестойкости. Инертные и лабильные комплексы.
- •5.1 Предмет и методы химической термодинамики. Взаимосвязь между процессами обмена веществ и энергии в организме. Химическая термодинамика как теоретическая основа биоэнергетики.
- •6) Типы систем.
- •7) Процессы
- •1)Второе начало термодинамики
- •5.6. Химическое равновесие. Обратимые и необратимые по направлению реакции.
- •4.8. Металло-лигандный гомеостаз и причины его нарушения.
- •4.9. Комплексные соединения в природе, организме человека, комплексные соединения как лекарственные средства.
- •5.7. Термодинамические условия равновесия в изолированных и закрытых системах.
- •6.2. Понятие об активных молекулах; энергия активации: уравнение Аррениуса. Энергетическая диаграмма реакции. Роль стерического фактора. Понятие о теории переходного состояния.
- •6.3. Скорость реакции, средняя скорость реакции в интервале, истинная скорость. Методы определения скорости реакции.
- •6.6 Катализ. Гомогенный и гетерогенный катализ. Энергетический профиль каталитической реакции. Особенности каталитической активности ферментов. Уравнение Михаэлиса - Ментен и его анализ.
- •6.7 Физические и химические процессы, происходящие при хранении лекарств. Влияние условий получения, хранения и транспортировки на стабильность лекарственных веществ. Сроки годности лекарств.
- •7.1. Адсорбционные равновесия и процессы на подвижных границах раздела фаз. Поверхностная энергия Гибса и поверхностное натяжение.
- •7.2. Сорбция, адсорбция, абсорбция, капиллярная конденсация, адсорбент, адсорбат
- •7.3. Изотерма адсорбции. Уравнение Гиббса.
- •7.4. Поверхностно активные и поверхностно неактивные вещества. Изменение поверхностной активности в гомологических рядах (Правило Траубе).
- •7.5. Ориентация молекул в поверхностном слое и структура биомембран
- •7.6. Адсорбционные равновесия на неподвижных границах раздела фаз. Физическая адсорбция и хемосорбция. Адсорбция газов на твердых телах. Зависимость величины адсорбции от различных факторов.
- •7.8. Значение адсорбционных процессов для жизнедеятельности. Физико-химические основы адсорбционной терапии, гемосорбции, применение в медицине ионитов.
- •8. Биологически активные высокомолекулярные вещества
- •8.1. Полимеры. Понятие о полимерах медицинского (стоматологического) назначения.
- •8.2. Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •8.3. Механизм набухания и растворения вмс. Зависимость величины набухания от различных факторов.
- •8.4. Аномальная вязкость растворов вмс. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей.
- •Классификация органических реакций по количеству исходных и конечных веществ и характеру реагентов: 1. Реакции по способу разрыва и образования связей:
- •2. Реакции по направлению:
- •4) Перегруппировки (происходит миграция атомов или групп атомов от одного атома к другому)
3.2. Классификация буферных систем:
1. кислотные (ацетатный буфер; ацетат натрия и уксусная кислота)
2. основные (аммиачный буфер)
Классификация кислотно-основных буферных систем. Буферные системы могут быть четырех типов: 1.Слабая кислота и ее анион А- /НА: ацетатная буферная система СН3СОО-/СН3СООН в растворе СН3СООNa и СН3СООН, область действия рН 3, 8 - 5, 8. Водород-карбонатная система НСО3-/Н2СО3 в растворе NaНСО3 и Н2СО3, область её действия - рН 5, 4 - 7, 4.
2. Слабое основание и его катион В/ВН+: аммиачная буферная система NH3/NH4+ в растворе NH3 и NH4Cl, область ее действия - рН 8, 2 - 10, 2.
3.Анионы кислой и средней соли или двух кислых солей: карбонатная буферная система СО32- /НСО3- в растворе Na2CO3 и NaHCO3, область ее действия рН 9, 3 - 11, 3.фосфатная буферная система НРО42-/Н2РО4- в растворе Nа2НРО4 и NаН2РО4, область ее действия рН 6, 2 - 8, 2.
4. Ионы и молекулы амфолитов. К ним относят аминокислотные и белковые буферные системы. Если аминокислоты или белки находятся в изоэлектрическом состоянии (суммарный заряд молекулы равен нулю), то растворы этих соединений не являются буферными. Они начинают проявлять буферное действие, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из ИЭС в форму “белок-кислота” или соответственно в форму “белок-основание”. При этом образуется смесь двух форм белка: а) слабая “белок-кислота” + соль этой слабой кислоты; б) слабое “белок-основание” + соль этого слабого основания.
Механизм буферного действия: его можно понять на примере ацетатной буферной системы СH3COO-/CH3COOH, в основе действия которой лежит кислотно-основное равновесие: CH3COOH <-> CH3COO- + H+; pKa=4,8.
Главный источник ацетат-ионов – сильный электролит CH3COONa:
CH3COONa -> CH3COO- + Na+
При добавление сильной кислоты сопряженное основание CH3COO- связывает добавочные ионы H+, превращаясь в слабую уксусную кислоту (кислотно-основное равновесие смещается влево, по Ле-Шателье).
Уменьшение концентрации анионов CH3COO- точно уравновешивается повышением концентрации молекул CH3COOH. В результате происходит небольшое изменение в соотношении концентраций слабой кислоты и ее соли, а следовательно, и незначительно меняется pH.
При добавлении щелочи протоны уксусной кислоты (резервная кислотность) высвобождаются и нейтрализуют добавочные ионы OH-, связывая их в молекулы воды:
CH3COOH + OH- <-> CH3COO- + H2O
(кислотно-основное равновесие смещается вправо, по Ле-Шателье). В этом случае также происходит небольшое изменение в соотношение концентраций слабой кислоты и ее соли, а следовательно, и незначительные изменения pH. Уменьшение концентраций слабой уксусной кислоты точно уравновешивается повышением концентрации анионов CH3COO-
Аналогичен механизм действия и других буферных систем.
3.3. Зона буферного действия
Буферная емкость(В) – величина, характеризующая способность буферного раствора противодействовать смещению реакции среды при добавлении сильных кислот или сильных оснований. Она измеряется количеством кислоты или щелочи (моль или моль эквивалентов), добавление которого к 1л буферного раствора изменяет pH на единицу.
B = C(X) * V(x) / дельтаp H*V
Буферная емкость зависит от ряда факторов: 1) чем больше количества комнонентов кислотно-основной пары основание/сопряженная кислота в растворе, тем выше буферная емкость этого раствора. 2) зависит от соотношения концентраций компонентов буферного раствора, а следовательно, и от pH буферного раствора.
