
- •2.3. Механизм и термодинамика процесса растворения
- •2.4. Концентрация растворов и способы ее выражения.
- •3.2. Классификация буферных систем:
- •3.4. Кислотный буфер:
- •3.5. Буферные системы крови:
- •3.5. Понятие о кислотно-основном состоянии (кос) организма.
- •4.1. Основные положения координационной теории Вернера. Дентатность лигандов. Классификация комплексных соединений.
- •4.3. Классификация комплексных соединений.
- •4.4 Номенклотура комплексных соединений
- •Строение гемоглобина, хлорофилла.
- •4.6. Представления о строении металлоферментов и других биокомплексных соединений (цитохромы, цианкобаламин).
- •4.7. Диссоциация комплексных соединений. Константа нестойкости. Инертные и лабильные комплексы.
- •5.1 Предмет и методы химической термодинамики. Взаимосвязь между процессами обмена веществ и энергии в организме. Химическая термодинамика как теоретическая основа биоэнергетики.
- •6) Типы систем.
- •7) Процессы
- •1)Второе начало термодинамики
- •5.6. Химическое равновесие. Обратимые и необратимые по направлению реакции.
- •4.8. Металло-лигандный гомеостаз и причины его нарушения.
- •4.9. Комплексные соединения в природе, организме человека, комплексные соединения как лекарственные средства.
- •5.7. Термодинамические условия равновесия в изолированных и закрытых системах.
- •6.2. Понятие об активных молекулах; энергия активации: уравнение Аррениуса. Энергетическая диаграмма реакции. Роль стерического фактора. Понятие о теории переходного состояния.
- •6.3. Скорость реакции, средняя скорость реакции в интервале, истинная скорость. Методы определения скорости реакции.
- •6.6 Катализ. Гомогенный и гетерогенный катализ. Энергетический профиль каталитической реакции. Особенности каталитической активности ферментов. Уравнение Михаэлиса - Ментен и его анализ.
- •6.7 Физические и химические процессы, происходящие при хранении лекарств. Влияние условий получения, хранения и транспортировки на стабильность лекарственных веществ. Сроки годности лекарств.
- •7.1. Адсорбционные равновесия и процессы на подвижных границах раздела фаз. Поверхностная энергия Гибса и поверхностное натяжение.
- •7.2. Сорбция, адсорбция, абсорбция, капиллярная конденсация, адсорбент, адсорбат
- •7.3. Изотерма адсорбции. Уравнение Гиббса.
- •7.4. Поверхностно активные и поверхностно неактивные вещества. Изменение поверхностной активности в гомологических рядах (Правило Траубе).
- •7.5. Ориентация молекул в поверхностном слое и структура биомембран
- •7.6. Адсорбционные равновесия на неподвижных границах раздела фаз. Физическая адсорбция и хемосорбция. Адсорбция газов на твердых телах. Зависимость величины адсорбции от различных факторов.
- •7.8. Значение адсорбционных процессов для жизнедеятельности. Физико-химические основы адсорбционной терапии, гемосорбции, применение в медицине ионитов.
- •8. Биологически активные высокомолекулярные вещества
- •8.1. Полимеры. Понятие о полимерах медицинского (стоматологического) назначения.
- •8.2. Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •8.3. Механизм набухания и растворения вмс. Зависимость величины набухания от различных факторов.
- •8.4. Аномальная вязкость растворов вмс. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей.
- •Классификация органических реакций по количеству исходных и конечных веществ и характеру реагентов: 1. Реакции по способу разрыва и образования связей:
- •2. Реакции по направлению:
- •4) Перегруппировки (происходит миграция атомов или групп атомов от одного атома к другому)
8.2. Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
-неспособность макромолекул диффундировать через полупроницаемые перегородки.
-малые скорости диффузии растворенных частиц
-малые значения осмотического давления
-Эффект Тиндаля
-более медленное протекание ряда хим. Процессов по сравнению с р-рами НМС
-повышенная склонность к образованию молекулярных комплексов
Свойства высокомолекулярных соединений зависят не только от величины, но и от формы их молекулы. Например, ВМС с изодиаметрическими молекулами (гемоглобина, гликогена, пепсина, трипсина, панкреатина и др.) обычно представляют собой порошкообразные вещества и при растворении почти не набухают. Их растворы не обладают высокой вязкостью даже при сравнительно больших концентрациях. ВМС с сильно асимметричными молекулами (желатина, целлюлозы и ее производных) при растворении сильно набухают и образуют высоковязкие растворы. Растворение ВМС с линейной структурой состоит из двух стадий: сольватации макромолекул в результате диффузии в ВМС растворителя (при этом происходит разрушение связей между отдельными макромолекулами) и собственно растворения, заключающегося в смешении макромолекул с маленькими молекулами растворителя. Полярные группы обладают способностью гидратироваться, т.е. ориентировать молекулы воды и удерживать их.
8.3. Механизм набухания и растворения вмс. Зависимость величины набухания от различных факторов.
Набухание и растворение ВМС. При контакте полимера (ВМС) и растворителя (НМС) происходит набухание и затем растворение полимера.
Набуханием называется проникновение растворителя в полимерное вещество, сопровождаемое увеличением объема и массы образца. Количественно набухание измеряется степенью набухания: ат = (m – m0)/m0 , где m0 — начальная масса; Vo — начальный объем образца полимера; т — масса; V — объем набухшего образца.
Степень набухания зависит от жесткости полимерных цепей. У жестких полимеров с большим числом поперечных связей между цепями степень набухания невелика. (Каучуки (резины) ограниченно набухают в бензине .Добавление бензола к натуральному каучуку приводит к неограниченному набуханию полимеров ).
Зависимость набухания от факторов:
Степень набухания полимера зависит от его природы и природы растворителя. Полимер набухает лучше в растворителе, молекулярные взаимодействия которого с макромолекулами велики. Полярные полимеры набухают в полярных жидкостях (белок в воде), неполярные — в неполярных (каучук в бензоле). Ограниченное набухание аналогично ограниченной растворимости. В результате образуются студни.
8.4. Аномальная вязкость растворов вмс. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей.
Кроме природы растворителя на набухание ВМС влияют присутствие электролитов, рН среды, температура.
Степень набухания уменьшается с увеличением жесткости кислот-катионов в ряду:Cs – Rb – K – Na – Li ; I – Br – Cl- F. Вязкость (внутреннее трение) — мера сопротивления среды движению. Эту величину характеризуют коэффициентом вязкости η .
Ньютон
для ламинарного (послойного) течения
жидкости установил зависимость:
где Р- напряжение, Па; η
—
коэффициент динамической вязкости
Па.с. dy/dt
—
скорость относительной деформации.
Растворы полимеров не подчиняются закону Ньютона.
Для небольших интервалов концентраций существует простая зависимость
ηпр.= а + bс
где а, в — постоянные коэффициенты.
Величина а определяется экспериментально и называется характеристической вязкостью полимера.
Характеристическая вязкость связана с молярной массой полимера формулой Штаудингера:
где К — коэффициент пропорциональности, а — показатель степени.
Формула Штаудингера используется при экспериментальном измерении молекулярной массы ВМС.
Вязкость крови и других биологических жидкостей.
Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выполняет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных
веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомолекулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. Несмотря на то, что в плазме крови содержится от 6 до 8% белков, коллоидо-осмотическое давление составляет примерно 0,5% (30—40 см водного столба) от общего осмотического давления плазмы, причем около 80% онкотического давления обусловлено наиболее низкодисперсными белками — альбуминами, а остальные 20% падают на другие белки плазмы. Существенным физиологическим моментом, связанным с важнейшими процессами, происходящими в организме, является поддержание состояния осмотического равновесия между кровью и тканевыми жидкостями, которое, будучи динамическим, обеспечивает постоянный обмен жидкости, низкомолекулярных питательных веществ и конечных продуктов обмена. Распределение воды и минеральных веществ между кровью и тканями и поддержание осмотического равновесия обеспечивается в основном нормальной концентрацией белков в плазме крови, а кровяное давление компенсируется коллоидно-осмотическим давлением. Безбелковая часть плазмы в результате гидростатического давления проникает в межклеточное пространство ткани, а в венозной части капилляров происходит обратный ток жидкости в сторону пониженного гидростатического давления по сравнению с коллоидоосмотическим давлением крови. Аналогичные процессы имеют место и в почках при образовании мочи. При понижении содержания белка в крови, т. е. при гипопротеинемиях, вследствие голодания, нарушений деятельности пищеварительного тракта или потери белка с мочой при заболеваниях почек, возникает разница в онкотическом давлении в тканевых жидкостях и в крови. Вода устремляется в сторону более высокого давления — в ткани; возникают так называемые онкотические отеки подкожной клетчатки
8.5. Осмотическое давление растворов биополимеров. Уравнение Галлера. Полиэлектролиты. Изоэлектрическая точка и методы её определения. Мембранное равновесие Доннана. Онкотическое давление плазмы и сыворотки крови.
Каждая
макромолекула ведет себя как совокупность
нескольких молекул меньшего размера.
Это и проявляется в увеличении
осмотического давления. Для расчета
осмотического давления растворов ВМС
Галлер
предложил уравнение
где с
—
концентрация раствора ВМС, г/л; М
—
молярная масса ВМС г/моль; β — коэффициент,
учитывающий гибкость и форму макромолекулы
в растворе.
Если звено полимерной цепи содержит ионогенную группу, то полимер называют полиэлектролитом. Они растворимы в полимерных растворителях, электропроводны, и на их свойствах сильно отражается кулоновское взаимодействие зарядов.
К классу синтетических полиэлектролитов, имеющих широкую область применения, относятся полиамфолиты. В сильнощелочных средах (высокие рН) молекулы полиамфолитов приобретают суммарный отрицательный заряд. При некотором промежуточном значении кислотности (3 < рН < < 11 для белков) суммарный заряд макромолекулы становится равным нулю. Это значение называется изоэлектрической точкой полиамфолита.
Изоэлектрическая точка может быть измерена однозначно с помощью электрофореза, может быть использованы данные по набуханию полиамфолитов в р-рах с разл.pH.
Онкотическое давление – часть осмотического давления крови π(ВМС), создаваемая в ней белками(альбумин, глобулин).
Мембранное равновесие Доннана – равенство электрохимических потенциалов частиц в левой и правой частях.
Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями
Онкотическое давление плазмы крови зависит в основном от концентрации белков, их размеров и гидрофильности (способности удерживать воду). Осмотическое давление водных растворов обусловлено солями. Онкотическое давление (ОнД) имеет большое значение в распределении воды и растворенных в ней веществ между кровью и тканями. ОнД крови составляет в среднем 7,5-8,0 атмосфер.
Осмотическое давление крови, лимфы и тканевой жидкости в норме поддерживается на постоянном уровне, хотя оно может незначительно изменяться, например при обильном поступлений в кровь воды или солей, но на непродолжительное время. Давление быстро выравнивается благодаря деятельности выделительных органов (почки, потовые железы), удаляющих избыток воды или солей.
При введении в кровь (внутривенно или внутриартериально) лекарственных веществ или солевых растворов, нужно обеспечивать одинаковое их осмотическое давление с осмотическим давлением крови.
Физиологические растворы все же не равноценны плазме крови, так как не содержат высокомолекулярных коллоидных веществ, которыми являются белки плазмы. Поэтому к солевому раствору с глюкозой прибавляют различные коллоиды, например водорастворимые высокомолекулярные полисахариды (декстран), или особым образом обработанные белковые препараты. Коллоидные вещества добавляют в количестве 7-8%. Такие растворы вводят человеку, например, после большой кровопотери. Однако наилучшей кровезамещающей жидкостью все же является плазма крови.
8.6
Относительно высокая устойчивость р-ра ВМС определяется наличием на поверхности частиц заряда и образованием плотной сольвативной оболочки. Высаливание - выделение поверхностно-активных веществ или ВМС из раствора при добавлении концентрированных негидролизующихся растворов солей. Коацервация — расслоение коллоидной системы с образованием коллоидных скоплений (коацерватов) в виде двух жидких слоев или капель. Коацервация может возникать в результате частичной дегидратации дисперсной фазы коллоида, являясь начальной стадией коагуляции. Коацервацию используют при капсулировании лекарств. Застудневание растворов ВМС-свойство студней при ограниченном набухании ВМС или частичном испарении растворителя из раствора ВМС образуются студни.
8.7
Свойства студней: студни не текучи, упруги, способны повторять форму, это обусловлено существованием пространственной сетки макромолекул. Синерезис-потеря гомогенности при старении студней. Сопровождается сжатием полимерной сетки и выделением жидкой фазы. Студни не обладают тиксотропией (способность восстанавливать свою структуру).
9.1