Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_na_zachet.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
893.44 Кб
Скачать

8.2. Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.

-неспособность макромолекул диффундировать через полупроницаемые перегородки.

-малые скорости диффузии растворенных частиц

-малые значения осмотического давления

-Эффект Тиндаля

-более медленное протекание ряда хим. Процессов по сравнению с р-рами НМС

-повышенная склонность к образованию молекулярных комплексов

Свойства высокомолекулярных соединений зависят не только от величины, но и от формы их молекулы. Например, ВМС с изодиаметрическими молекулами (гемоглобина, гликогена, пепсина, трипсина, панкреатина и др.) обычно представляют собой порошкообразные вещества и при растворении почти не набухают. Их растворы не обладают высокой вязкостью даже при сравнительно больших концентрациях. ВМС с сильно асимметричными молекулами (желатина, целлюлозы и ее производных) при растворении сильно набухают и образуют высоковязкие растворы. Растворение ВМС с линейной структурой состоит из двух стадий: сольватации макромолекул в результате диффузии в ВМС растворителя (при этом происходит разрушение связей между отдельными макромолекулами) и собственно растворения, заключающегося в смешении макромолекул с маленькими молекулами растворителя. Полярные группы обладают способностью гидратироваться, т.е. ориентировать молекулы воды и удерживать их.

8.3. Механизм набухания и растворения вмс. Зависимость величины набухания от различных факторов.

Набухание и растворение ВМС. При контакте полимера (ВМС) и растворителя (НМС) происходит набухание и затем растворение полимера.

Набуханием называется проникновение растворителя в полимерное вещество, сопровождаемое увеличением объема и массы образца. Количественно набухание измеряется степенью набухания: ат = (m – m0)/m0 , где m0 — начальная масса; Vo — начальный объем образца полимера; т — масса; V — объем набухшего образца.

Степень набухания зависит от жесткости полимерных цепей. У жестких полимеров с большим числом поперечных связей между цепями степень набухания невелика. (Каучуки (резины) ограниченно набухают в бензине .Добавление бензола к натуральному каучуку приводит к неограниченному набуханию полимеров ).

Зависимость набухания от факторов:

Степень набухания полимера зависит от его природы и природы растворителя. Полимер набухает лучше в растворителе, молекулярные взаимодействия которого с макромолекулами велики. Полярные полимеры набухают в полярных жидкостях (белок в воде), неполярные — в неполярных (каучук в бензоле). Ограниченное набухание аналогично ограниченной растворимости. В результате образуются студни.

8.4. Аномальная вязкость растворов вмс. Уравнение Штаудингера. Вязкость крови и других биологических жидкостей.

Кроме природы растворителя на набухание ВМС влияют присутствие электролитов, рН среды, температура.

Степень набухания уменьшается с увеличением жесткости кислот-катионов в ряду:Cs – Rb – K – Na – Li ; I – Br – Cl- F. Вязкость (внутреннее трение) — мера сопротивления среды движению. Эту величину характеризуют коэффициентом вязкости η .

Ньютон для ламинарного (послойного) течения жидкости установил зависимость: где Р- напряжение, Па; η — коэффициент динамической вяз­кости Па.с. dy/dt — скорость относительной деформации.

Растворы полимеров не подчиняются закону Ньютона.

Для небольших интервалов концентраций существует простая зависимость

ηпр.= а + bс

где а, в — постоянные коэффициенты.

Величина а определяется экспериментально и называется характеристической вязкостью полимера.

Характеристическая вязкость связана с молярной массой полимера формулой Штаудингера:

где К — коэффициент пропорциональности, а — показатель степени.

Формула Штаудингера используется при экспериментальном измерении молекулярной массы ВМС.

Вязкость крови и других биологических жидкостей.

Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выпол­няет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных

веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомоле­кулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. Несмотря на то, что в плазме крови содержится от 6 до 8% белков, коллоидо-осмотическое давление составляет примерно 0,5% (30—40 см водного столба) от общего осмотического давления плазмы, причем около 80% онкотического давления обуслов­лено наиболее низкодисперсными белками — альбуминами, а ос­тальные 20% падают на другие белки плазмы. Существенным физиологическим моментом, связанным с важ­нейшими процессами, происходящими в организме, является под­держание состояния осмотического равновесия между кровью и тканевыми жидкостями, которое, будучи динамическим, обеспечи­вает постоянный обмен жидкости, низкомолекулярных питатель­ных веществ и конечных продуктов обмена. Распределение воды и минеральных веществ между кровью и тканями и поддержание осмотического равнове­сия обеспечивается в основном нормальной концентрацией белков в плазме крови, а кровяное давление компенсируется колло­идно-осмотическим давлением. Безбелковая часть плазмы в результате гидростатического давления проникает в межклеточное пространство ткани, а в ве­нозной части капилляров проис­ходит обратный ток жидкости в сторону пониженного гидростати­ческого давления по сравнению с коллоидоосмотическим давлени­ем крови. Аналогичные процессы имеют место и в почках при образовании мочи. При понижении содержания белка в крови, т. е. при гипопротеинемиях, вследствие голодания, нарушений деятельности пищеварительного тракта или потери белка с мочой при заболеваниях почек, возникает разница в онкотическом давлении в тканевых жидкостях и в крови. Вода уст­ремляется в сторону более высо­кого давления — в ткани; возни­кают так называемые онкотические отеки подкожной клетчатки

8.5. Осмотическое давление растворов биополимеров. Уравнение Галлера. Полиэлектролиты. Изоэлектрическая точка и методы её определения. Мембранное равновесие Доннана. Онкотическое давление плазмы и сыворотки крови.

Каждая макромолекула ведет себя как совокупность нескольких молекул меньшего размера. Это и проявляется в увеличении осмотического давле­ния. Для расчета осмотического давления растворов ВМС Галлер предложил уравнение где с — концентрация раствора ВМС, г/л; М — молярная масса ВМС г/моль; β — коэффициент, учитывающий гибкость и форму макромолекулы в растворе.

Если звено полимерной цепи содержит ионогенную группу, то полимер называют полиэлектролитом. Они растворимы в полимерных растворителях, электропроводны, и на их свой­ствах сильно отражается кулоновское взаимодействие зарядов.

К классу синтетических полиэлектролитов, имеющих широкую область применения, относятся полиамфолиты. В сильнощелочных средах (высокие рН) молекулы полиамфолитов приобретают суммарный отрицательный заряд. При некотором промежуточном значении кислотности (3 < рН < < 11 для белков) суммарный заряд макромолекулы становится равным нулю. Это значение называется изоэлектрической точкой полиамфолита.

Изоэлектрическая точка может быть измерена однозначно с помощью электрофореза, может быть использованы данные по набуханию полиамфолитов в р-рах с разл.pH.

Онкотическое давление – часть осмотического давления крови π(ВМС), создаваемая в ней белками(альбумин, глобулин).

Мембранное равновесие Доннана – равенство электрохимических потенциалов частиц в левой и правой частях.

Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями

Онкотическое давление плазмы крови зависит в основном от концентрации белков, их размеров и гидрофильности (способности удерживать воду). Осмотическое давление водных растворов обусловлено солями. Онкотическое давление (ОнД) имеет большое значение в распределении воды и растворенных в ней веществ между кровью и тканями. ОнД крови составляет в среднем 7,5-8,0 атмосфер.

Осмотическое давление крови, лимфы и тканевой жидкости в норме поддерживается на постоянном уровне, хотя оно может незначительно изменяться, например при обильном поступлений в кровь воды или солей, но на непродолжительное время. Давление быстро выравнивается благодаря деятельности выделительных органов (почки, потовые железы), удаляющих избыток воды или солей.

При введении в кровь (внутривенно или внутриартериально) лекарственных веществ или солевых растворов, нужно обеспечивать одинаковое их осмотическое давление с осмотическим давлением крови.

Физиологические растворы все же не равноценны плазме крови, так как не содержат высокомолекулярных коллоидных веществ, которыми являются белки плазмы. Поэтому к солевому раствору с глюкозой прибавляют различные коллоиды, например водорастворимые высокомолекулярные полисахариды (декстран), или особым образом обработанные белковые препараты. Коллоидные вещества добавляют в количестве 7-8%. Такие растворы вводят человеку, например, после большой кровопотери. Однако наилучшей кровезамещающей жидкостью все же является плазма крови.

8.6

Относительно высокая устойчивость р-ра ВМС определяется наличием на поверхности частиц заряда и образованием плотной сольвативной оболочки. Высаливание - выделение поверхностно-активных веществ или ВМС из раствора при добавлении концентрированных негидролизующихся растворов солей. Коацервация — расслоение коллоидной системы с образованием коллоидных скоплений (коацерватов) в виде двух жидких слоев или капель. Коацервация может возникать в результате частичной дегидратации дисперсной фазы коллоида, являясь начальной стадией коагуляции. Коацервацию используют при капсулировании лекарств. Застудневание растворов ВМС-свойство студней при ограниченном набухании ВМС или частичном испарении растворителя из раствора ВМС образуются студни.

8.7

Свойства студней: студни не текучи, упруги, способны повторять форму, это обусловлено существованием пространственной сетки макромолекул. Синерезис-потеря гомогенности при старении студней. Сопровождается сжатием полимерной сетки и выделением жидкой фазы. Студни не обладают тиксотропией (способность восстанавливать свою структуру).

9.1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]