Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ОП.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.76 Mб
Скачать

2.2.2.2. Классификация частей (подсистем) рэс.

Как было установлено ранее, элементы РЭС обладают различными природными свойствами: электрическими, магнитными, электромагнитными, тепловыми, пространственными и др. Рассмотрим ПП с элементами - систему из трех элементов g1,g2,g3 с различными свойствами (рис. 2.9.), объединенных определенными связями R.

R – резистор

ИС – интегральная схема

ПП – печатная плата

а) ПП с элементами б) Модель системы

Рис.2.9. Система из трех элементов.

Ясно, что различные по природе отношения R могут быть условно разделены по характерным признакам и тогда, вместо одной системы S со смешанными связями, можно получить ряд отдельных подсистем со связями одной природы (рис.2.10.): тепловыми, пространственными, электромагнитными. Вместо одной системы (ПП с ИС) получим три ее модели (описания). (вспомни "Введение" и рис 1.2.).

1 - подсистема тепловых связей ST={Г, RT}={Г,qTТ}

2 - подсистема пространственных связей Sпр={Г, Rпр}={Г, qпр, Епр}

3 - подсистема электромагнитных связей Sэм={Г, Rэм}={Г, qэм, Еэм}

Рис. 2.10. Совокупность подсистем со связями одного вида.

Но, поскольку элементы Г в трех "различных" подсистемах в сущности одни и те же элементы, следовательно между тремя подсистемами Sпр, SТ, Sэм существуют какие-то связи (отношения) и система S в целом может быть представлена как совокупность взаимодействующих подсистем (рис. 2.1.1.), т.е.

S={Sпр, ST, Sэм,Rs', Rs'', Rs'"}= {Ss, Rs}

Рис. 2.11. Новая модель системы S.

Полученные выводы можно распространить на РЭС в целом. Итак, вследствии того, что элементы Г РЭС обладают различными по природе свойствами, то и отношения R между элементами Г будут различными по природе: электромагнитные, тепловые, пространственные. Таким образом, говоря о проектируемой РЭА, можно представить себе совокупность {Si} различных подсистем Sпр, ST, Sэм… со своими принципами Ппр, Пт, Пэм, структурами qпр, qT, qэм…, конституэнтами Епр, ЕT, Еэм отличающихся природой связей. Совмещение частных подсистем дает систему S - РЭС (рис.2.12.)

S={Ss, Rs}

Среди частных подсистем Ss следует выделить те, которые необходимо учитывать при проектировании РЭС.

Электромагнитная подсистема Sэм - это совокупность элементов РЭС, связанных (объединенных) между собой множеством электромагнитных связей, т.е. участвующих в преобразовании (и/или передаче, генерации) электромагнитной энергии с целью реализации основных принципов функционирования РЭС. (Частично моделируется Sэм с помощью схемы электрической принципиальной).

Пространственная (геометрическая, компоновочная) подсистема Sпр - это совокупность элементов конструкции, объединенных множеством пространственных отношений и придающая элементам и конструкции в целом определенные формы, взаимное положение и размеры. (Описывается набором чертежей).

Механическая подсистема Sм - совокупность материальных элементов конструкции, связанных механическими связями и обменивающихся механической энергией при силовом взаимодействии.

Тепловая подсистема ST - совокупность элементов конструкции, объединенных между собой процессом передачи тепла от элементов-источников тепла, по элементам-проводникам тепла к элементам-приемникам тепла. (Две последние подсистемы специальным образом в комплекте конструкторской документации не описываются).

Рис.2.12. Системное представление РЭС.

Чрезвычайно существенным является наличие связей Rs между подсистемами Sэм, ST, Sпр, Sм . Причина возникновения связей кроется в том, что основная часть элементов всех подсистем - одни и те же элементы.

Следовательно, вариации значений параметров Хi', элемента gi одной физической природы, т.е. изменения внутри одной частной подсистемы, зачастую приводит к изменению значений параметров этого же элемента gi, но другой физической природы Хi'', что изменяет параметры соответствующей частной подсистемы Si . Например, уменьшение размеров конструкций при прочих равных условиях, т.е. изменения значений параметров только пространственной подсистемы Sпр приводит к изменению значений параметров тепловой подсистемы ST. Причем, та, в свою очередь, - к изменению электромагнитной подсистемы Sэм.

Наличие взаимосвязей между подсистемами порождает следующее свойство системы РЭС: в общем случае, при изменении какой-либо из подсистем Sj, jÎJ или некоторой их совокупности {Si}, iÎQÌI будет меняться и общая система S. Другими словами, любое локальное изменение в РЭС, будь то изменение схемы, геометрии аппарата и т.д., приведет ко всеобщим изменениям в нем.

Поговорим теперь о задаче проектирования РЭС.

Можно представить проектирование РЭС как проектирование системы S, т.е. поиск множества взаимодействующих частных подсистем S1,S2, …, SI и множества связывающих их отношений Rs.

S ={Ss, Rs},

г де Ss - подмножество декартова произведения x , = S={Sпр, Sм, Sт, Sэм};

Rs - семейство отношений между взаимодействующими подсистемами Sпр, Sэм, …, ST, ; Rs= {Rs1, Rs2, …, Rsi}.

Представив себе, таким образом, задачу проектирования РЭС, становится очевидной ее чрезвычайная сложность по двум причинам. Во-первых, необходимо проектирование целого ряда частных подсистем Sпр, Sэм, …, ST. Во-вторых, проектировщику необходимо учесть и множество взаимодействий, отношений Rs= {Rs1, Rs2, …, Rsi}, между различными подсистемами, так или иначе определяющих свойства системы S.

В связи с указанными трудностями, вместо одновременного проектирования подсистем Sпр, Sэм, …, ST РЭС, в практике производят последовательное проектирование подсистем с возвратом. Например, на начальных этапах проектирования - функциональное проектирование Sф , затем - проектирование электромагнитной подсистемы Sэм и т.д.

Рис. 2.13. Последовательность проектирования РЭС.

Достоинство такого подхода очевидно. Это - упрощение задачи на определенном этапе. Исторический процесс развития радиоэлектроники выделил из множества этапов последовательного проектирования РЭС главный - проектирование электромагнитной подсистемы Sэм РЭС, т.е. упор при проектировании делался на схемотехнический этап. Причины здесь следующие: на первых порах развития радиоэлектроники необходимо было расширить области применения РЭС, необходимо было выяснить принципиальные возможности решения задач, а также удовлетворять возрастающим требованиям к точности, помехозащищенности, дальности действия РЭС и т.п.. Все это давало схемотехническое проектирование. Требования к конструкции были нежесткими, время и затраты на проектирование удовлетворяли общество.