
- •5. Диаграммы состояния (фазового равновесия) сплавов
- •Компоненты и фазы в сплавах железа с углеродом
- •Легированные стали
- •Раздел I. Строение и свойства металлов 22
- •Раздел I. Строение и свойства металлов 22
- •Стали и сплавы для режущего инструмента
- •Особенности термообработки литейных сталей
- •Раздел VIII. Материалы на основе полимеров
- •Раздел I. Строение и свойства металлов 22
- •Раздел I. Строение и свойства металлов 22
- •Глава 38. Стали и сплавы пищевой промышленности
- •Биметаллы в пищевой промышленности
- •Наплавка износостойкими материалами
- •Раздел I. Строение и свойства металлов
- •Глава 1
- •Общая характеристика металлов и сплавов
- •Дефекты строения кристаллических тел
- •Степень переохлатдения- Температура
- •Глава 2 деформация и разрушение металлов
- •Свойства металлов и сплавов
- •Упругая и пластическая деформация
- •Хрупкое и вязкое разрушение
- •Факторы, определяющие характер разрушения
- •Наклеп и рекристаллизация
- •Глава 3
- •Металлографические методы испытаний
- •Испытания механических свойств
- •Специальные методы испытаний
- •3.7. Неразрушающие методы контроля
- •Раздел II. Строение и свойства сплавов
- •Глава 4
- •Характеристика основных фаз в сплавах
- •4.2. Структура сплавов
- •4.4. Пути упрочнения сталей и сплавов
- •Напряжение трения решетки
- •Содержание элементов, %
- •Глава 5
- •Основные типы диаграмм состояния
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (II рода)
- •Раздел III. Железо и его сплавы
- •Глава 6
- •6.2. Диаграмма состояния системы железо - цементит (метастабильное состояние)
- •Глава 7 углеродистые стали
- •Общая характеристика
- •Влияние углерода на свойства стали
- •7.3. Влияние примесей на свойства стали
- •Классификация углеродистых сталей
- •Глава 8 легированные стали
- •Карбиды в легированных сталях
- •Классификация легированных сталей
- •Раздел I. Строение и свойства металлов 22
- •Маркировка сталей по национальным стандартам Японии
- •Глава 9 чугуны
- •Разновидности чугунов
- •9.2. Процесс графитизации чугунов
- •Легированные чугуны
- •Раздел IV. Термическая обработка стали
- •Глава 10
- •Общие сведения
- •Превращения в стали при нагреве.
- •Мартенситное превращение аустенита
- •Глава 11
- •Отжиг стали
- •Закалка стали
- •Отпуск стали
- •Поверхностная закалка
- •Азотирование стали
- •Раздел V. Промышленные стали и сплавы
- •Глава 13
- •Влияние модифицирования на ударную вязкость и критическую температуру хрупкости стали 08гфл
- •Глава 14 конструкционные стали
- •Общая характеристика
- •Цементируемые стали
- •Рессорно-пружинные стали
- •Судостроительные стали (гост 5521-93)
- •Марки и сортамент
- •Глава 15 инструментальные стали и сплавы
- •Стали для измерительного инструмента
- •Штамповые стали
- •Стали для штампов горячего деформирования
- •Глава 16
- •16.1. Общие сведения
- •Виды электрохимической коррозии
- •Оценка коррозионной стойкости
- •Методы защиты от коррозии
- •Глава 17
- •17.1. Жаростойкие стали (heat resistant steel)
- •Критерии жаропрочности
- •Раздел I. Строение и свойства металлов 22
- •Суперсплавы
- •Глава 18
- •Радиационно-стойкие материалы
- •Свойства и применение аморфных сплавов
- •Особенности наноструктурных материалов
- •Глава 19 литейные стали
- •19.1. Характеристика литейных сталей
- •19.4. Особенности применения литейных сталей
- •Глава 20
- •Общие сведения
- •Конструкционные материалы
- •Антифрикционные материалы (гост 26802-86)
- •Фрикционные материалы
- •Пористые фильтрующие элементы
- •Инструментальные порошковые стали
- •Карбидостали
- •Раздел VI. Цветные металлы и сплавы
- •Глава 21
- •Основные свойства магния
- •Деформируемые магниевые сплавы
- •Литейные магниевые сплавы
- •Применение магниевых сплавов
- •Глава 22
- •Основные свойства бериллия
- •Сплавы бериллия
- •Применение бериллия
- •Глава 23 алюминий и его сплавы
- •Основные свойства алюминия
- •Классификация алюминиевых сплавов
- •Деформируемые алюминиевые сплавы
- •Литейные алюминиевые сплавы
- •Маркировка алюминиевых сплавов
- •Глава 24
- •Основные свойства титана
- •Глава 25
- •Основные свойства меди
- •Сплавы меди с цинком, или латуни
- •25 3 Бронзы
- •25.4. Антифрикционные сплавы, припои, легкоплавкие сплавы
- •Раздел VII. Хладостойкие металлы и сплавы
- •Глава 26 хладостойкие стали
- •Общие сведения
- •Стали криогенной техники
- •Метастабильные аустенитные стали
- •Глава 27
- •Алюминий и его сплавы
- •27.2. Титан и его сплавы
- •Раздел VIII. Материалы на основе полимеров
- •Глава 28 характеристика полимеров
- •Состав и строение полимеров
- •Основные свойства полимеров
- •Раздел I. Строение и свойства металлов 22
- •Общая характеристика пластмасс
- •Термопластичные пластмассы (термопласты)
- •Раздел I. Строение и свойства металлов 22
- •Глава 30 резины
- •Глава 32 лакокрасочные материалы
- •Глава 33 стекло
- •Глава 34 древесина
- •Строение и химический состав древесины
- •34.3. Общая характеристика видов древесины
- •Изделия из древесины
- •Долговечность и консервация древесины
- •Глава 35
- •Общие сведения
- •Пластмассы
- •Клеящие материалы
- •Раздел IX. Керамические и композиционные материалы
- •Глава 36 керамические материалы
- •Глава 37 композиционные материалы
- •37.1. Общая характеристика и классификация
- •Волокнистые композиционные материалы
- •Слоистые композиты
- •Глава 38
- •Биметаллы в пищевой промышленности
- •Металлическая тара и упаковка
- •Раздел X. Покрытия в машиностроении
- •Глава 39
- •Глава 40 металлические покрытия
- •Цинковые покрытия
- •Оловянные и хромсодержащие покрытия
- •Наплавка износостойкими материалами
- •Лакокрасочные покрытия
- •Раздел XI. Проблемы выбора и применения
- •Глава 42
- •Технические условия и стандарты
- •Технологические свойства
- •Глава 43 примеры выбора материалов
Глава 2 деформация и разрушение металлов
Свойства металлов и сплавов
Различают физические, химические, технологические и механические свойства. Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. К физическим свойствам относятся плотность, теплоемкость, температура плавления, термическое расширение, магнитные характеристики, теплопроводность, электропроводность.
47
Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Характерным примером химического взаимодействия среды и металла является коррозия.
Технологические свойства металлов и сплавов характеризуют их способность подвергаться горячей и холодной обработке, в том числе при выплавке, горячем и холодном деформировании, обработке резанием, термической обработке и особенно сварке. При рассмотрении свойств отдельных видов материалов их технологичности будет уделено соответствующее внимание.
Целесообразность применения тех или иных материалов определяется не только их свойствами, но и их стоимостью.
При конструировании изделий в первую очередь руководствуются механическими свойствами материалов. Механические свойства материалов характеризуют их способность сопротивляться деформированию и разрушению под воздействием различного рода нагрузок. Механические нагрузки могут быть статическими, динамическими и циклическими. Кроме того, материалы могут подвергаться деформации и разрушению как при разных температурах, так и в различных, в том числе агрессивных, средах.
Упругая и пластическая деформация
Деформацией называется изменение формы и размеров тела под действием напряжений. Деформация, возникающая при сравнительно небольших напряжениях и исчезающая после снятия нагрузки, называется упругой, а сохраняющаяся - остаточной, или пластической. При увеличении напряжений деформация может заканчиваться разрушением.
На
диаграмме растяжения (рис. 2.1) упругая
деформация характеризуется линией
ОА.
Выше точки А
нарушается пропорциональность между
напряжением и деформацией. Рост
напряжения
приводит не только к упругой, но и к
остаточной пластической деформации.
Упругая и пластическая деформации в своей физической основе принципиально отличаются одна от другой. При упругой деформации происходит обратимое смещение атомов из положений равновесия в кристаллической
Рис. 2.1. Диаграмма растяжения
решетке. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла. После снятия нагрузки сместившиеся атомы под действием сил притяжения (при растяжении) или отталкивания (при сжатии) возвращаются в исходное равновесное положение, и кристаллы приобретают первоначальную форму и размеры. Упругие свойства материалов определяются силами межатомного взаимодействия.
В основе пластической деформации лежит необратимое перемещение одних частей кристалла относительно других. После снятия нагрузки исчезает лишь упругая составляющая деформации. Пластичность, т. е. способность металлов перед разрушением претерпевать значительную пластическую деформацию, является одним из важнейших свойств металлов. Благодаря пластичности осуществляется обработка металлов давлением. Пластичность позволяет перераспределять локальные напряжения равномерно по всему объему металла, что уменьшает опасность разрушения.
Для металлов характерно бо.лыпее сопротивление растяжению или сжатию, чем сдвигу. Поэтому процесс пластической деформации обычно представляет собой процесс скольжения одной части кристалла относительно другой по кристаллографической плоскости или плоскостям скольжения с более плотной упаковкой атомов, где наименьшее сопротивление сдвигу. Скольжение осуществляется в результате перемещения в кристалле дислокаций. В результате скольжения кристаллическое строение перемещающихся частей не меняется (рис. 2.2).
г
|
|
|
|
|
|
|
|
|
|
|
|
|
|
и |
||
|
|
|
|
|
|
|
|
ч |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
\ |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
\ |
|
|
|
|
|
|
|
||||||||
|
|
|
|
F
Рис. 2.2. Схема пластической деформации скольжением:
я - исходное состояние; б - упругодеформированное состояние; в - упруго- и пластически деформированное состояние; г - состояние после пластической (остаточной) деформации по плоскости АВ; F - усилие
F
I
П nr
Рис.
2.3.
Пластическая
деформация двойникованием:
F
-
усилие; АВ
-
плоскость перемещения
В соответствии с дислокационной концепцией процессы скольжения и двойникования осуществляются не одновременным сдвигом одной атомной плоскости относительно другой, а последовательным перемещением дислокаций в плоскости сдвига. Благодаря тому, что для перемещения дислокаций требуются значительно меньшие усилия, чем для жесткого смещения атомных плоскостей, фактическое напряжение сдвига значительно меньше теоретического.
Величина напряжения, необходимого для осуществления пластической деформации, зависит от скорости деформирования и температуры. С увеличением скорости деформирования достижение заданной деформации требует больших напряжений, а при повышении температуры значение необходимых напряжений снижается. Таким образом, пластическая деформация является термически активируемым процессом. При понижении температуры предел текучести большинства металлов растет. Металлы с ГЦК решеткой имеют значительно меньшую зависимость предела текучести от температуры, чем металлы с другими типами решеток.