
- •Сущность железобетона (три основных условия существования). Достоинства и недостатки.
- •1. Сущность железобетона
- •2. Условия существования железобетона
- •Обеспечение совместных деформаций бетона и арматуры
- •Примерное равенство коэффициентов температурного расширения
- •Наличие защиты арматуры от воздействий окружающей среды
- •3. Достоинства и недостатки железобетона
- •2. Расчет по наклонным сечениям для случая разрушения от действия поперечной силы.
- •3. Классификация бетона. Структура бетона и его влияние на прочность и деформированность.
- •1. Классификация бетонов
- •2. Структура бетона и его влияние на прочность и деформативность
- •4. Расчет наклонных сечений на действие изгибающего момента.
- •5. Кубиковая и призменная прочность бетона. Применение их значений при проектировании жбк.
- •Размеров испытываемого образца
- •6. Проектирование внецентренно сжатых элементов. Расчет, конструктивные требования.
- •При случайном эксцентриситете еа
- •7. Основные виды образцов для испытания бетона при сжатии, растяжении. Влияние размеров образцов на прочность бетона при сжатии.
- •Размеров испытываемого образца
- •8. Проектирование внецентренно растянутых элементов. Расчет, конструктивные требования.
- •3. Внецентренно-растянутые элементы
- •Внецентренно растянутого элемента для случая 1
- •Внецентренно растянутого элемента для случая 2
- •4. Обобщение
- •Изгибаемого элемента для случая больших эксцентриситетов
- •Внецентренно растянутого элемента для случая 1
- •Внецентренное растяжение
- •Внецентренно растянутого элемента для случая 2
- •9. Классы и марки бетона. Определение. Границы значений.
- •Существует класс бетона по прочности на сжатие b по прочности на растяжение Bt .
- •Среднее квадратичное отклонение прочности бетона – это величина, характеризующая разброс прочности экспериментальных значений.
- •10. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование плиты.
- •11. Связь между напряжениями и деформациями в бетоне при упругой и упругопластической работе. Модуль деформаций бетона – начальный, секущий, касательный.
- •12. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование второстепенной балки.
- •Конструктивная схема
- •2. Расчет плиты
- •3. Армирование плит отдельными стержнями
- •4. Армирование плит сварными плоскими и рулонными сетками
- •5. Расчет второстепенной балки
- •6. Армирование второстепенной балки
- •Каркасами и сетками
- •13. Прочность бетона при длительной нагрузке, многократно повторяющихся нагрузках. Мера ползучести и характеристика ползучести бетона.
- •14. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование главной балки.
- •1. Расчет главной балки
- •2. Армирование главной балки
- •15. Пластические свойства арматурных сталей. Физический предел текучести стали, условный предел текучести.
- •16. Балочные сборные перекрытия. Расчет и конструирование перекрытия.
- •Компоновка конструктивной схемы
- •2. Проектирование плит перекрытий
- •3. Проектирование ригеля
- •4. Расчет коротких консолей
- •17. Диаграммы растяжения различных арматурных сталей, характерные точки на них. Классификация арматуры по 4 конструктивно-технологическим признакам.
- •18. Плиты, опертые по контуру. Основы проектирования.
- •19. Сцепление арматуры с бетоном.
- •1. Сцепление арматуры с бетоном
- •20. Сущность предварительно напряженного железобетона. Преимущества предварительно напряженных конструкций.
- •21. Сущность коррозии железобетона, меры защиты. Назначение защитного слоя бетона в конструкциях, требуемая толщина.
- •22. Способы создания предварительного напряжения, способы натяжения арматуры.
- •23. Три стадии напряженно-деформированного состояния железобетонных элементов при изгибе.
- •24. Потери напряжений. Понятие о приведенном сечении. Конструктивные особенности изгибаемых элементов.
- •25. Требования к трещиностойкости железобетонных конструкций. Категории трещиностойкости.
- •26. Расчет прямоугольных сечений (2 типа задач).
- •1 Тип расчета
- •2 Тип расчета.
- •5. Расчет тавровых сечений с двойной арматурой
- •30. Расчет по наклонным сечениям для случая разрушения между наклонными трещинами.
2. Структура бетона и его влияние на прочность и деформативность
Структура бетона грубо неоднородна и зависит от многих факторов. Она формируется в виде пространственной решетки из цементного камня, заполненной зернами крупных и мелких заполнителей и пронизанной многочисленными микропорами и капиллярами, содержащими химически не связанную воду, водяные пары и воздух.
С физической точки зрения бетон представляет собой капиллярно-пористое тело, в котором резко нарушена сплошность массы и присутствуют все три фазы: твердая, жидкая и газообразная. При этом цементный камень, скрепляющий бетон, также неоднороден и состоит из упругого кристаллического состава и вязкой массы – геля, таким образом, это наделяет бетон упруго-пластично-ползучими свойствами. Эти свойства проявляются в характере деформирования бетона под нагрузкой, во взаимодействии с температурно-влажностным режимом окружающей среды. Во времени кристаллический состав увеличивается, а гелевая часть уменьшается.
Рекомендуемое водоцементное отношение В/Ц ≈ 0,2. Однако по технологическим соображениям – для достижения достаточной подвижности и удобоукладываемости бетонной смеси – количество воды берут с некоторым избытком (В/Ц = 0,5 ÷ 0,6) Если В/Ц > 0,6 , то прочность бетона уменьшается.
Состав бетона, различный по крупности: от микрочастиц до макрочастиц цемента, обуславливает неравномерные деформации.
Рассмотрим диаграмму начала и конца трещинообразования бетона (рис. 2.1)
Рис. 2.1. Диаграмма начала и конца трещинообразования
начало
микротрещинообразования;
конец
микротрещинообразования.
Фактически конец микротрещинообразования является пределом длительной прочности бетона, т.е.
(2.1)
где
предел длительной прочности бетона
При достижении предела длительной прочности бетона количество трещин достигает максимального значения (насыщение).
предел
кратковременной прочности бетона
(диапазон уплотнения бетона)
(2.2)
где
–
коэффициент упругопластичности;
– упругие деформации;
– неупругие
(пластические) деформации;
– полные деформации
Если любым способом
обеспечивать постоянство деформаций
(т.е. обеспечивать условие
= const),
то на диаграмме будет ниспадающая
ветвь.
Вокруг пор и пустот при одноосном сжатии образуются по продольным площадкам растягивающие структурные напряжения, уравновешенные сжимающими напряжениями. Вследствие частого и хаотического расположения пустот происходит взаимное наложение растягивающих напряжений, а это приводит к появлению и развитию микротрещин задолго до его разрушения (рис. 2.2).
а) б)
Рис. 2.2. Схема образования трещин
а) – концентрация напряжений у микро- и макропор;
б) – разрыв бетона в поперечном направлении
Отсутствие закономерности в расположении заполнителей в затвердевшем бетоне, размере пор приводит к разбросу показателей прочности, что приводит к большому числу лабораторных и натурных экспериментов.
На прочность бетона большое влияние оказывает скорость нагружения образцов (рис. 2.3).
Рис. 2.3. Диаграмма скоростей нагружения
При замедленном нагружении образцов прочность бетона на 10 ÷15% меньше, чем при кратковременном нагружении. При быстром нагружении прочность бетона возрастает до 20% по сравнению с кратковременным нагружением.
Бетон имеет разную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. Различают несколько характеристик прочности бетона: кубиковую и призменную прочность; прочность при срезе и скалывании; прочность при длительном, кратковременном и динамическом воздействии нагрузок, при многократных повторных нагрузках.