
- •Сущность железобетона (три основных условия существования). Достоинства и недостатки.
- •1. Сущность железобетона
- •2. Условия существования железобетона
- •Обеспечение совместных деформаций бетона и арматуры
- •Примерное равенство коэффициентов температурного расширения
- •Наличие защиты арматуры от воздействий окружающей среды
- •3. Достоинства и недостатки железобетона
- •2. Расчет по наклонным сечениям для случая разрушения от действия поперечной силы.
- •3. Классификация бетона. Структура бетона и его влияние на прочность и деформированность.
- •1. Классификация бетонов
- •2. Структура бетона и его влияние на прочность и деформативность
- •4. Расчет наклонных сечений на действие изгибающего момента.
- •5. Кубиковая и призменная прочность бетона. Применение их значений при проектировании жбк.
- •Размеров испытываемого образца
- •6. Проектирование внецентренно сжатых элементов. Расчет, конструктивные требования.
- •При случайном эксцентриситете еа
- •7. Основные виды образцов для испытания бетона при сжатии, растяжении. Влияние размеров образцов на прочность бетона при сжатии.
- •Размеров испытываемого образца
- •8. Проектирование внецентренно растянутых элементов. Расчет, конструктивные требования.
- •3. Внецентренно-растянутые элементы
- •Внецентренно растянутого элемента для случая 1
- •Внецентренно растянутого элемента для случая 2
- •4. Обобщение
- •Изгибаемого элемента для случая больших эксцентриситетов
- •Внецентренно растянутого элемента для случая 1
- •Внецентренное растяжение
- •Внецентренно растянутого элемента для случая 2
- •9. Классы и марки бетона. Определение. Границы значений.
- •Существует класс бетона по прочности на сжатие b по прочности на растяжение Bt .
- •Среднее квадратичное отклонение прочности бетона – это величина, характеризующая разброс прочности экспериментальных значений.
- •10. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование плиты.
- •11. Связь между напряжениями и деформациями в бетоне при упругой и упругопластической работе. Модуль деформаций бетона – начальный, секущий, касательный.
- •12. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование второстепенной балки.
- •Конструктивная схема
- •2. Расчет плиты
- •3. Армирование плит отдельными стержнями
- •4. Армирование плит сварными плоскими и рулонными сетками
- •5. Расчет второстепенной балки
- •6. Армирование второстепенной балки
- •Каркасами и сетками
- •13. Прочность бетона при длительной нагрузке, многократно повторяющихся нагрузках. Мера ползучести и характеристика ползучести бетона.
- •14. Ребристые монолитные плоские перекрытия с плитами балочного типа. Расчет и конструирование главной балки.
- •1. Расчет главной балки
- •2. Армирование главной балки
- •15. Пластические свойства арматурных сталей. Физический предел текучести стали, условный предел текучести.
- •16. Балочные сборные перекрытия. Расчет и конструирование перекрытия.
- •Компоновка конструктивной схемы
- •2. Проектирование плит перекрытий
- •3. Проектирование ригеля
- •4. Расчет коротких консолей
- •17. Диаграммы растяжения различных арматурных сталей, характерные точки на них. Классификация арматуры по 4 конструктивно-технологическим признакам.
- •18. Плиты, опертые по контуру. Основы проектирования.
- •19. Сцепление арматуры с бетоном.
- •1. Сцепление арматуры с бетоном
- •20. Сущность предварительно напряженного железобетона. Преимущества предварительно напряженных конструкций.
- •21. Сущность коррозии железобетона, меры защиты. Назначение защитного слоя бетона в конструкциях, требуемая толщина.
- •22. Способы создания предварительного напряжения, способы натяжения арматуры.
- •23. Три стадии напряженно-деформированного состояния железобетонных элементов при изгибе.
- •24. Потери напряжений. Понятие о приведенном сечении. Конструктивные особенности изгибаемых элементов.
- •25. Требования к трещиностойкости железобетонных конструкций. Категории трещиностойкости.
- •26. Расчет прямоугольных сечений (2 типа задач).
- •1 Тип расчета
- •2 Тип расчета.
- •5. Расчет тавровых сечений с двойной арматурой
- •30. Расчет по наклонным сечениям для случая разрушения между наклонными трещинами.
6. Армирование второстепенной балки
Рис. 14.10. Армирование второстепенной балки сварными плоскими
Каркасами и сетками
1 – конструктивная сетка над крайней главной балкой; 2 – надопорные сетки;
3 – два стыковых
стержня
и не менее 10 мм; 4 – рабочие стержни
надопорной сетки; 5 – дополнительные
стержни у колонны; 6 – корытообразная
сетка
Армирование второстепенных балок сварными каркасами (обычно двумя) и сетками является основным видом армирования.
Каркасы перед установкой в опалубку соединяют в пространственный каркас приваркой горизонтальных поперечных стержней. Каркасы доводят до граней главных балок.
На опорах второстепенные балки армируют сетками с поперечным расположением рабочей арматуры. Для этого над главной балкой раскатывают рулонные сетки или укладывают по всей длине над главными балками плоские сетки. В местах колонн надопорные сетки прерывают и взамен их вблизи колонн устанавливают дополнительные стержни или дополнительные отрезки сетки с площадью, равной площади рабочих стержней надопорной сетки, приходящихся на ширину колонны. За расчетную площадь растянутой арматуры второстепенной балки на опоре принимают суммарную площадь всех рабочих стержней надопорных сеток, расположенных между осями соседних панелей плиты.
При значительных пролетах второстепенных балок в целях экономии стали надопорная растянутая арматура может быть образована двумя сетками, частично перекрывающими одна другую. Над крайней опорой второстепенная балка армируется конструктивными сетками.
13. Прочность бетона при длительной нагрузке, многократно повторяющихся нагрузках. Мера ползучести и характеристика ползучести бетона.
При длительном действии нагрузки неупругие деформации бетона с течением времени увеличиваются. Наибольшая интенсивность нарастания неупругих деформаций наблюдается первые 3—4 мес и может продолжаться несколько лет. Свойство бетона, характеризующееся нарастанием деформаций при длительном действии нагрузки, называют ползучестью бетона. Деформации ползучести могут в 3—4 раза превышать упругие деформации. При длительном действии постоянной нагрузки, если деформации ползучести нарастают свободно, напряжения в бетоне остаются постоянными. Если же связи в бетоне (например, стальная арматура) стесняют свободное развитие ползучести, то ползучесть будет стесненной, при которой напряжения в бетоне уже не будут оставаться постоянными. Если бетонному образцу сообщить некоторое начальное напряжение оь и начальную деформацию , а затем устранить возможность дальнейшего деформирования наложением связей, то с течением времени напряжения в бетоне начинают уменьшаться. Свойство бетона, характеризующееся уменьшением с течением времени напряжений при постоянной начальной деформации, называют релаксацией напряжений. Ползучесть и релаксация имеют общую природу и оказывают существенное влияние на работу железобетонных конструкций под нагрузкой. Опыты с бетонными призмами показывают, что независимо от того, с какой скоростью загружения v было получено напряжение, конечные деформации ползучести, соответствующие этому напряжению, будут одинаковыми. С ростом напряжений ползучесть бетона увеличивается. Загруженный в раннем возрасте бетон обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Технологические факторы также влияют на ползучесть бетона: с увеличением W/C и количества цемента на единицу объема бетонной смеси ползучесть возрастает; с повышением прочности зерен заполнителей ползучесть уменьшается; с повышением прочности бетона, его класса ползучесть уменьшается. Многократное повторение циклов загружения и разгрузки бетонной призмы приводит к постепенному накапливанию неупругих деформаций. После достаточно большого числа циклов эти неупругие деформации, соответствующие данному уровню напряжений, постепенно выбираются, ползучесть достигает своего предельного значения, бетон начинает работать упруго. Такой характер деформирования наблюдается лишь при напряжениях, не превышающих предел выносливости. При больших напряжениях после некоторого числа циклов неупругие деформации начинают неограниченно расти, что приводит к разрушению образца. . В опытах при осевом сжатии призм наблюдается предельная сжимаемость бетона (0,8...3)10-3, в среднем ее принимают равной 2-10_3.