
- •Симетрія – основні поняття.
- •Матерія та її єдність із законами симетрії.
- •Чотири типи взаємодій та їх характеристики.
- •Симетрія фізичних законів.
- •Симетрія законів збереження.
- •Фізична картина світу.
- •1) Місце фізики у сучасному житті.
- •2) Підрозділи фізики та предмети їх досліджень.
- •4) Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •5) Написати і охарактеризувати кінематичні рівняння поступального і о бертального рухів.
- •6)Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •7) Види руху
- •8) Зв'язок лінійних і кутових фізичних величин.
- •10. Третій закон Ньютона.
- •11. Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
- •12. Закон збереження енергії.
- •13. Однорідне силове поле. Рух мт в однорідному силовому полі.
- •18. Правило важелів Архімеда
- •19. Дисипативна енергія
- •14. Визначення коефіцієнта вязкості
- •16. Теорія подібності та її використання у фізико-технологічних процесах
- •9) Імовірність розподілу молекул за швидкостями
- •10. Теорія хімічної будови бутлерова.
- •11. Структурна і просторова ізомерія. Фізичні методи визначеннях структури.
- •12. Основні типи молекулярних зв’язків – іонний, ковалентний. Квантово-механічне пояснення ковалентного зв’язку.
- •14. Явище переносу в газах.
- •Нульове начало термодинаміки.
- •Внутрішня енергія ідеального газу.
- •Перше начало термодинаміки. Робота газу при сталому тиску.
- •Теплоємність газу за сталого обєму і сталого тиску.
- •5. Закон дюлонга та пті
- •9. Питома теплота плавлення та пароутворення речовини
- •10. Робота теплових двигунів та холодильників
- •12. Третій закон термодинаміки
- •12. Третій закон термодинаміки
- •Причини утворення поверхневого шару рідини.
- •Розрахунок висоти підняття рідини в капілярі
- •Формула Лапласа і її характеристика
- •Електризація тіл. Два роди зарядів.
- •Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лінями.
- •Теорема Гауса та її застосування до тіл простої геометричної форми.
- •10. Поведінка провідників в електричному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •11. Конденсатори. Ємність плаского, сферичного конденсатора.
- •12. Паралельне та послідовне з’єднання конденсаторів.
- •13.Енергія плаского конденсатора
- •Класифікація матеріалів за електричними властивостями. Провідники, діалектрики, напівпровідники і надпровідники.
- •Електричний диполь , дипольний момент, поле диполя.
- •Теорема гауса.
- •Полярні і неполярні молекули. Поляризація речовини.
- •Вплив речовини діалектрика на електричне поле.
- •Основна задача електростатики.
- •Пєзоелектрики, сегнетоелектрики, піроелектрики.
- •Робота, енергія, обємна густина енергії.
- •1) Постійний електричний струм. Середня швидкість спрямованого руху електронів.
- •2) Густина струму. Закон Ома у локальній формі.
- •3) Провідність та питомий опір речовини.
- •5) Паралельне та послідовне з’єднання резисторів.
- •6) Перше та друге правило Кірхгофа (на прикладах)
- •7) Електричні прилади та їх використання.
- •12) Класична електронна теорія металів
- •95. Робота електростатичного поля з переміщення одиничного заряду.
- •96. Потенціал. Різниця потенціалів. Еквіпотенціальні поверхні. Одиниці вимірювання потенціалу.
- •101. Дослід Міллікена-Йоффе.
1) Місце фізики у сучасному житті.
Фізика – це наука, яка вивчає загальні закономірності перебігу природних явищ, закладає основи світорозуміння на різних рівнях пізнання природи і дає загальне обґрунтування природничо-наукової картини світу. Сучасна фізика крім наукового має важливе соціокультурне значення. Вона стала невід’ємною складовою культури високотехнологічного інформаційного суспільства. Фундаментальний характер фізичного знання як філософії науки і методології природознавства, теоретичної основи сучасної техніки і виробничих технологій визначає освітнє, світоглядне та виховне значення курсу фізики як навчального предмета.
2) Підрозділи фізики та предмети їх досліджень.
Сучасні фізичні дослідження можна розподілити на окремі галузі, які вивчають різні аспекти матеріального світу. Фізика конденсованих середовищ, сконцентрована на вивченні властивостей звичних проявів матерії, таких як тверді тіла та рідини. Їхні властивості випливають з властивостей та особливостей взаємодії атомів цих речовин. Атомна, молекулярна фізика та оптика мають справу саме з індивідуальними атомами та молекулами. Галузь фізики елементарних частинок, більш відома під назвою фізики високих енергій, вивчає властивості субмікроскопічних, набагато менших ніж атоми, частинок, із яких побудована вся матерія. Нарешті, астрофізика прикладає фізичні закони до пояснення астрономічних феноменів, починаючи від Сонця та інших об'єктів сонячної системі, і закінчуючи Всесвітом як таким.
3) Головна задача механіки. Система відліку. Система координат.
Механіка в загальному розумінні – наука про механічний рух та рівновагу тіл і взаємодію, що виникає при цьому між тілами. Відноситься механіка до природничих наук. Механіку поділяють на загальну механіку, механіку суцільних середовищ і прикладну механіку. Розрізняють статику, кінематику й динаміку. До загальної механіки відносять аналітичну механіку, небесну механіку, балістику, теорію гіроскопів, теорію стійкості руху, а також теорію коливань, біомеханіку, теоретичну механіку тощо. Основу механіки суцільних середовищ становить гідроаеромеханіка, газова динаміка, механіка деформівного твердого тіла. До прикладної механіки відносять механіку ґрунтів і сипких тіл, будівельну механіку, опір матеріалів та ін. Засновником механіки є Ґ.Ґалілей. Основні закони динаміки встановив Ісаак Ньютон. Систе́ма ві́дліку — сукупність нерухомих одне відносно іншого тіл, відносно яких розглядається рух, і годинників, що відраховують час. При вивченні фізичних систем і законів їх взаємодії необхідно встановити спосіб визначення положення, яке займає кожна система, і спосіб відліку моменту часу, який відповідає цьому положенню. Оскільки руху окремо взятого предмета не існує, то і його положення в певні моменти часу можна встановити тільки відносно якихось тіл. Система відліку складається з вихідного тіла відліку і з фіксованим початковим моментом для відліку часу. Координати на площині і в просторі можна вводити нескінченним числом різних способів. Вирішуючи ту або іншу математичну або фізичну задачу методом координат, можна використовувати різні координатні системи, вибираючи ту з них, в якій завдання вирішується простіше або зручніше в даному конкретному випадку.