
- •Вторая часть лекций по базам данных. Модели Данных.
- •2.1. Базы данных, субд, банк данных.
- •1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки.
- •2. Предоставление пользователям возможности манипулирования данными (выполнение вычислений, разработка интерфейса ввода/вывода, визуализация).
- •3. Обеспечение логической и физической независимости данных.
- •4. Защита логической целостности базы данных.
- •5. Защита физической целостности.
- •6. Управление полномочиями пользователей на доступ к базе данных.
- •7. Синхронизация работы нескольких пользователей.
- •8. Управление ресурсами среды хранения.
- •9. Поддержка деятельности системного персонала.
- •2.2. Различные модели организации работы пользователей с базой данных
- •2.2.1. Модель с централизованной архитектурой
- •2.2.2. Модель с автономными персональными эвм
- •2.2.3. Модель вычислений с сетью и файловым сервером (архитектура «файл-сервер»)
- •2.2.4. Распределенная модель вычислений (архитектура «клиент – сервер»)
- •2.2.5. Распределенная модель вычислений (Клиент – сервер. Трехзвенная (многозвенная) архитектура)
- •2.3. Концептуальное моделирование базы данных
- •2.3.1. Сложный пример предметной области
- •2.3.2. Способы описания предметной области
- •2.3.3. Описание информационного представления предметной области
- •2.3.4. Описание информационных потребностей пользователя
- •2.3.5. Различные представления о данных в базах данных
- •2.3.6. Построение концептуальной модели
- •2.3.7. Средства автоматизированного проектирования концептуальной модели
- •2.4. Модели данных субд как инструмент представления концептуальной модели
- •2.4.1. Общие представления о модели данных
- •2.4.2. Сетевая модель данных
- •2.4.3. Иерархическая модель данных
- •2.4.4. Реляционная модель данных
- •2.5. Базовые понятия реляционной модели данных
- •2.5.1. Общая характеристика реляционной модели данных
- •1. Типы данных
- •2. Домены
- •3. Отношения, атрибуты, кортежи отношения
- •3. Свойства отношений
- •4. Первая нормальная форма
- •2.5.2. Манипулирование данными в реляционной модели
- •1. Объединение
- •2. Пересечение
- •3. Вычитание
- •4. Декартово произведение
- •5. Выборка (ограничение, селекция)
- •6. Проекция
- •7. Соединение
- •8. Деление
- •3.2.2. 1Нф (Первая Нормальная Форма)
- •3.2.3. Функциональные зависимости
- •3.2.4. 2Нф (Вторая Нормальная Форма)
- •3.2.5. 3Нф (Третья Нормальная Форма)
- •3.2.6. Алгоритм нормализации (приведение к 3нф)
- •3.2.7. Сравнение нормализованных и ненормализованных моделей
- •3.2.8. Нфбк (Нормальная Форма Бойса-Кодда)
- •3.2.9. 4Нф (Четвертая Нормальная Форма)
- •3.2.10. 5Нф (Пятая Нормальная Форма)
- •3.2.11. Продолжение алгоритма нормализации (приведение к 5нф)
- •3.3. Элементы модели "сущность-связь"
- •3.3.1. Основные понятия er-диаграмм
- •3.3.2. Пример разработки простой er-модели
- •3.3.2. Концептуальные и физические er-модели
- •Типы данных
- •Константы
- •Выражения
- •Встроенные функции
- •Отсутствующие значения
- •3.1.2. Простые запросы на выборку
- •Инструкция select
- •Простые запросы
- •Повторяющиеся строки (предикат distinct)
- •Отбор строк (предложение where)
- •Условие отбора
- •Составные условия отбора (операторы or, and, not)
- •Сортировка результатов запроса (предложение order by)
- •Объединение результатов нескольких запросов (оператор union)
- •3.1.3. Многотабличные запросы на выборку (объединения) Простое объединение таблиц (объединение по равенству)
- •Объединение таблиц по неравенству
- •Особенности многотабличных запросов
- •Внутренняя структура объединения таблиц
- •Внешнее объединение таблиц
2.3.2. Способы описания предметной области
Введем основные понятия, с помощью которых описывается предметная область.
Сущность (Entity) или объект – то, о чем будет накапливаться информация в информационной системе (нечто такое, за чем пользователь хотел бы наблюдать).
Если в системе обрабатывается информация об абитуриентах, сущностью может являться абитуриент, если обрабатывается информация об экзамене, то сущность – экзамен и т.п. Каждая сущность обладает определенным набором свойств (рассматриваем только свойства, представляющие интерес для пользователей в рамках проводимого исследования), которые запоминаются в информационной системе.
Так, например, в качестве свойств сущности АБИТУРИЕНТ можно указать фамилию, дату рождения, место рождения, в качестве свойств сущности ЭКЗАМЕН – предмет, дату проведения экзамена, экзаменаторов.
Совокупность сущностей, характеризующихся в информационной системе одним и тем же перечнем свойств, называется классом сущностей (набором объектов).
Так, например, совокупность всех сущностей АБИТУРИЕНТ составляет класс сущностей АБИТУРИЕНТ, совокупность всех сущностей ЭКЗАМЕН составляет класс сущностей ЭКЗАМЕН.
Класс сущностей описывается перечнем свойств сущностей, составляющих этот класс.
Экземпляром сущности будем называть конкретную сущность (сущность с конкретными значениями соответствующих свойств).
Пример класса сущностей АБИТУРИЕНТ и конкретного экземпляра сущности показан на рис. 2.
Рис.2. Класс сущностей и экземпляр сущности
Взаимоотношения сущностей выражаются связями (Relationships).
Различают классы связей и экземпляры связей.
Классы связей – это взаимоотношения между классами сущностей, а экземпляры связи – взаимоотношения между экземплярами сущностей.
Класс связей может затрагивать несколько классов сущностей.
Число классов сущностей, участвующих в связи, называется степенью связи n = 2, 3, … Так, например, класс сущностей АБИТУРИЕНТ связан с классом сущностей ЭКЗАМЕН связью «сдает». Степень этой связи равна двум. В качестве примера связи степени три можно указать связь «родители» между тремя классами сущностей МАТЬ, ОТЕЦ, РЕБЕНОК. При n=2 связь называется бинарной.
Рассмотрим классификацию бинарных связей. В зависимости от того, сколько экземпляров сущности одного класса связаны со сколькими экземплярами сущности другого класса, различают следующие типы связей:
Связь 1:1. Одиночный экземпляр сущности одного класса связан с одиночным экземпляром сущности другого класса. Примером является связь «соответствует» между классами сущностей ФАКУЛЬТЕТ и РАСПИСАНИЕ ЭКЗАМЕНОВ НА ФАКУЛЬТЕТ (каждому факультету соответствует свое расписание).
Связь 1:M. Единый экземпляр сущности одного класса связан сомногими экземплярами сущности другого класса. Примером является связь «зачисление» между классами сущностей ФАКУЛЬТЕТ и АБИТУРИЕНТ (на один факультет зачисляется много абитуриентов).
Связь M:N. Несколько экземпляров сущности одного класса связны с несколькими экземплярами сущности другого класса. Примером является связь «сдают» между классами сущностей АБИТУРИЕНТ и ЭКЗАМЕН (каждый абитуриент сдает несколько экзаменов, и каждый экзамен сдают много абитуриентов).
Числа, описывающие типы бинарных связей (1:1, 1:M, M:N), обозначают максимальное количество сущностей на каждой стороне связи. Эти числа называются максимальными кардинальными числами, а соответствующая пара чисел называется максимальной кардинальностью.