
- •Вторая часть лекций по базам данных. Модели Данных.
- •2.1. Базы данных, субд, банк данных.
- •1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки.
- •2. Предоставление пользователям возможности манипулирования данными (выполнение вычислений, разработка интерфейса ввода/вывода, визуализация).
- •3. Обеспечение логической и физической независимости данных.
- •4. Защита логической целостности базы данных.
- •5. Защита физической целостности.
- •6. Управление полномочиями пользователей на доступ к базе данных.
- •7. Синхронизация работы нескольких пользователей.
- •8. Управление ресурсами среды хранения.
- •9. Поддержка деятельности системного персонала.
- •2.2. Различные модели организации работы пользователей с базой данных
- •2.2.1. Модель с централизованной архитектурой
- •2.2.2. Модель с автономными персональными эвм
- •2.2.3. Модель вычислений с сетью и файловым сервером (архитектура «файл-сервер»)
- •2.2.4. Распределенная модель вычислений (архитектура «клиент – сервер»)
- •2.2.5. Распределенная модель вычислений (Клиент – сервер. Трехзвенная (многозвенная) архитектура)
- •2.3. Концептуальное моделирование базы данных
- •2.3.1. Сложный пример предметной области
- •2.3.2. Способы описания предметной области
- •2.3.3. Описание информационного представления предметной области
- •2.3.4. Описание информационных потребностей пользователя
- •2.3.5. Различные представления о данных в базах данных
- •2.3.6. Построение концептуальной модели
- •2.3.7. Средства автоматизированного проектирования концептуальной модели
- •2.4. Модели данных субд как инструмент представления концептуальной модели
- •2.4.1. Общие представления о модели данных
- •2.4.2. Сетевая модель данных
- •2.4.3. Иерархическая модель данных
- •2.4.4. Реляционная модель данных
- •2.5. Базовые понятия реляционной модели данных
- •2.5.1. Общая характеристика реляционной модели данных
- •1. Типы данных
- •2. Домены
- •3. Отношения, атрибуты, кортежи отношения
- •3. Свойства отношений
- •4. Первая нормальная форма
- •2.5.2. Манипулирование данными в реляционной модели
- •1. Объединение
- •2. Пересечение
- •3. Вычитание
- •4. Декартово произведение
- •5. Выборка (ограничение, селекция)
- •6. Проекция
- •7. Соединение
- •8. Деление
- •3.2.2. 1Нф (Первая Нормальная Форма)
- •3.2.3. Функциональные зависимости
- •3.2.4. 2Нф (Вторая Нормальная Форма)
- •3.2.5. 3Нф (Третья Нормальная Форма)
- •3.2.6. Алгоритм нормализации (приведение к 3нф)
- •3.2.7. Сравнение нормализованных и ненормализованных моделей
- •3.2.8. Нфбк (Нормальная Форма Бойса-Кодда)
- •3.2.9. 4Нф (Четвертая Нормальная Форма)
- •3.2.10. 5Нф (Пятая Нормальная Форма)
- •3.2.11. Продолжение алгоритма нормализации (приведение к 5нф)
- •3.3. Элементы модели "сущность-связь"
- •3.3.1. Основные понятия er-диаграмм
- •3.3.2. Пример разработки простой er-модели
- •3.3.2. Концептуальные и физические er-модели
- •Типы данных
- •Константы
- •Выражения
- •Встроенные функции
- •Отсутствующие значения
- •3.1.2. Простые запросы на выборку
- •Инструкция select
- •Простые запросы
- •Повторяющиеся строки (предикат distinct)
- •Отбор строк (предложение where)
- •Условие отбора
- •Составные условия отбора (операторы or, and, not)
- •Сортировка результатов запроса (предложение order by)
- •Объединение результатов нескольких запросов (оператор union)
- •3.1.3. Многотабличные запросы на выборку (объединения) Простое объединение таблиц (объединение по равенству)
- •Объединение таблиц по неравенству
- •Особенности многотабличных запросов
- •Внутренняя структура объединения таблиц
- •Внешнее объединение таблиц
2.5.2. Манипулирование данными в реляционной модели
Для манипулирования данными в реляционной модели используются два формальных аппарата:
реляционная алгебра, основанная на теории множеств;
реляционное исчисление, базирующееся на исчислении предикатов первого порядка.
Операции, реализуемые с помощью указанных аппаратов, обладают важным свойством: они замкнуты на множестве отношений. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями реляционных БД и результатом вычисления также являются отношения. В результате любое выражение или формула могут интерпретироваться как отношение, что позволяет использовать их в других выражениях или формулах.
Как мы увидим, алгебра и исчисление обладают большой выразительной мощностью, очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. Именно по этой причине такие механизмы включены в реляционную модель данных.
Конкретный язык манипулирования реляционными БД называется реляционно полным, если любой запрос, выражаемый с помощью одной операции реляционной алгебры или одной формулы реляционного исчисления, может быть выражен с помощью одного оператора этого языка.
Операции реляционной алгебры
Реляционная алгебра представляет собой
набор операторов, использующих отношения
в качестве аргументов, и возвращающие
отношения в качестве результата. Таким
образом, реляционный оператор
выглядит
как функция с отношениями в качестве
аргументов:
Реляционная алгебра является замкнутой, т.к. в качестве аргументов в реляционные операторы можно подставлять другие реляционные операторы, подходящие по типу:
Таким образом, в реляционных выражениях можно использовать вложенные выражения сколь угодно сложной структуры.
Каждое отношение обязано иметь уникальное имя в пределах базы данных. Имя отношения, полученного в результате выполнения реляционной операции, определяется в левой части равенства. Однако можно не требовать наличия имен от отношений, полученных в результате реляционных выражений, если эти отношения подставляются в качестве аргументов в другие реляционные выражения. Такие отношения будем называть неименованными отношениями. Неименованные отношения реально не существуют в базе данных, а только вычисляются в момент вычисления значения реляционного оператора.
Традиционно, вслед за Коддом [43], определяют восемь реляционных операторов, объединенных в две группы.
Теоретико-множественные операторы:
Объединение
Пересечение
Вычитание
Декартово произведение
Специальные реляционные операторы:
Выборка
Проекция
Соединение
Деление
Не все они являются независимыми, т.е. некоторые из этих операторов могут быть выражены через другие реляционные операторы.
Отношения, совместимые по типу
Некоторые реляционные операторы (например, объединение) требуют, чтобы отношения имели одинаковые заголовки. Действительно, отношения состоят из заголовка и тела. Операция объединения двух отношений есть просто объединение двух множеств кортежей, взятых из тел соответствующих отношений. Но будет ли результат отношением? Во-первых, если исходные отношения имеют разное количество атрибутов, то, очевидно, что множество, являющееся объединением таких разнотипных кортежей нельзя представить в виде отношения. Во-вторых, пусть даже отношения имеют одинаковое количество атрибутов, но атрибуты имеют различные наименования. Как тогда определить заголовок отношения, полученного в результате объединения множеств кортежей? В-третьих, пусть отношения имеют одинаковое количество атрибутов, атрибуты имеют одинаковые наименования, но определенны на различных доменах. Тогда снова объединение кортежей не будет образовывать отношение.
Определение 1. Будем называть отношения совместимыми по типу, если они имеют идентичные заголовки, а именно,
Отношения имеют одно и то же множество имен атрибутов, т.е. для любого атрибута в одном отношении найдется атрибут с таким же наименованием в другом отношении,
Атрибуты с одинаковыми именами определены на одних и тех же доменах.
Некоторые отношения не являются совместимыми по типу, но становятся таковыми после некоторого переименования атрибутов. Для того чтобы такие отношения можно было использовать в реляционных операторах, вводится вспомогательный оператор переименования атрибутов.
Теоретико-множественные операторы