
- •16. Укажите, с какой целью проводится ступенчатый режим отжига – гомогенизации магниевых сплавов с большим содержанием Al и Zn, и за счет каких эффектов эта цель достигается?
- •17. Как изменяются основные св-ва сплавов в результате отжига-гомогенизации (относительное удлинение, временное сопротивление разрыву, ударная вязкость, коррозионная стойкость)?
- •1. Дайте опр-ия термических и структурных напряжений, возникающих в изделиях при т.О. Укажите причины их возникновения.
- •3. Представьте основные понятия о сдвиговом механизме снятия внутренних напряжений при отжиге. Каковы особенности кинетики этого процесса?
- •4. Представьте основные понятия о диффузионном механизме снятия внутренних напряжений при отжиге. Каковы особенности кинетики этого процесса?
- •6. Назовите основные причины уменьшения коэф-та упрочнения на третьей стадии деформационного упрочнения. Каковы механизмы этих явлений?
- •7. Fe подвергали пластической деформации с различными скоростями: от 0,001 1/с до 1000 1/с, при t-ах от
- •8. Назовите причины вызывающие анизотропию св-в деформированного металла. Выделите из них, наиболее существенные факторы, вызывающие анизотропию св-в.
- •9. В чем заключается принципиальное отличие текстур деформации и рекристаллизации? Каким образом они образуются?
- •11. В чем заключается отличие понятий “отдых” и “возврат” холодно-деформированного металла? Дайте краткую хар-ку процессов “отдыха”.
- •12. В чем заключается отличие понятий «полигонизация» и «рекристаллизация на месте»? Что между ними общего? Дайте краткое опр-ие понятия «рекристаллизация на месте».
- •15. Из цеха холодной штамповки возвращена партия листовых заготовок с указанием вида брака «апельсиновая корка». Что это за вид брака? в результате чего он образуется, как исключить его возникновение?
- •18. Каковы особенности развития процессов рекристаллизации после критической степени деформации? Когда следует использовать такую деформацию? Когда она вредна?
- •19. Каковы особенности влияния длительности рекристаллизационного отжига на размер рекристаллизованного зерна? Что такое инкубационный период рекристаллизации? Что лежит в основе этого явления?
- •21. На стадии вторичной рекристаллизации процессы начинаются с «исчезновения» отдельных высокоугловых границ. Покажите, что лежит в основе этого явления и к чему это приводит.
- •1. Цель отжига 2-ого рода. Какие явления лежат в основе отжига 2-ого рода?
- •2. Что такое степень переохлаждения и степень перенагрева? Какова их роль в развитии фазовой перерекристаллизации?
- •8. Чем отличается изотермическая диаграмма фазового превращения при охлаждении от аналогичной диаграммы фазового превращения при нагреве?
- •9. Вычертите с-образную диаграмму. Охарактеризуйте области и основные линии этой диаграммы. Укажите, каков физический смысл.
- •10. Какую информацию о структурном состоянии и св-ах сплавов можно получить с помощью диаграмм изотермического превращения переохлажденной фазы при охл-ии?
- •11. Что такое когерентность решеток двух фаз? Какую роль играет когерентность решеток фаз, претерпевающих фазовую перерекристаллизацию?
- •13. Почему на первых стадиях фазовой перекристаллизации часто образуется зародыш промежуточной фазы, имеющий дискообразную или пластинчатую форму вместо сферического зародыша стабильной фазы?
- •14. Указать, как влияют структурные неоднородности в исходной фазе, размер зерна исходной фазы, наличие в сплаве кристаллов избыточной фазы на развитие фазовой перекристаллизации.
- •15. Укажите, как влияет пластическая деформация под действием приложенных напряжений извне (горячейОд) на развитие фазовой перекристаллизации.
- •16. Укажите, как влияют термические напряжения, обусловленные быстрым нагревом или охл-ем образца, на развитие фазовой перекристаллизации.
- •18. Назовите основные этапы аустенитного превращения. Почему для начала аустенитного превращения требуется перенагрев стали выше точки Ас1?
- •61. Назовите основные механизмы графитизации цементита в чугунах при отжиге. Объясните, почему прямая диссоциация цементита как хим-ого соед-ия не может обеспечить превращения белого чугуна в ковкий.
- •64. Приведите основной режим отжига для получения ковкого чугуна. Охарактеризуйте структурные изменения при отжиге, конечную структуру и св-ва чугуна, получаемого по такому режиму.
- •69. Дайте понятия гетерогенизационного отжиг. Приведите основные схемы полного, неполного и изотермического гетерогенизационного отжига.
- •1. Назначьте t-ру нагрева под закалку сплава Al – 4 % Cu и Al – 7 % Cu.
- •2. Сплавы системы Al-Cu могут использоваться для изготовления штамповок и отливок. Чем будет отличаться режим закалки при одинаковом хим-ом составе сплавов?
- •3. Исходя из чего, назначают охлаждающую среду при закалке без полиморфного превращения?
- •4. Чем отличается структура закаленного сплава Al-4%Cu от отожженного?
- •5. Два образца из сплава Al-4% Cu при отжиге охлаждались:
- •6. Нарисуйте график изменения концентрации углерода в мартенсите в стали 40 при изменении t-ры нагрева под закалку от 730 до 850 °с.
- •7. Как изменяется содержание углерода в мартенсите и кол-во мартенсита в сталях с содержанием углерода от 0,2 до 0,8% после их закалки с t-ры 760ºС?
- •8. Как, может, повлиять легирование стали Ni или Ti на склонность к получению при закалке крупноигольчатого мартенсита?
- •10. Чем объясняется большая скорость роста мартенситных кристаллов при мартенситном превращении аустенита в процессе закалки углерод стали?
- •11. Что такое дополнительная деформация при мартенситном превращении?
- •12. Укажите, как влияет содержание углерода в заэвтектойдных сталях на положения мартенситных точек при закалке с t-ры 760ºС?
- •14. Чем объясняется получение высокой плотности дислокаций в мартенситных кристаллах после закалки стали?
- •15. Чем объясняется сохранение в структуре закаленной стали Аост?
- •1. Каковы причины перераспределения атомов растворенных элементов в твердых растворах на самых ранних стадиях распада при старении?
- •2. Приведите схему структурных изменений, соответствующих сфероидизации частиц при старении. Чем обусловлено стремление частиц к сфероидизации и за счет каких процессов она происходит?
- •3. Чем объясняется образование промежуточных фаз на первых стадиях распада пересыщенных твердых растворов при старении вместо стабильных?
- •4. Чем объяснятся растворение наиболее мелких частиц и рост наиболее крупных из них на стадии коагуляции (завершающей стадии распада пересыщенных твердых растворов) при старении?
- •10. Первая стадия распада мартенсита при отпуске стали происходит с очень высокими скоростями. Чем это объясняется? Как проявляется в структуре стали развитие первой стадии распада мартенсита?
- •11. Дайте объяснение причин того, что распад Аост при отпуске происходит при более высоких t-ах, чем распад мартенсита.
- •12. Какие структурные изменения соответствуют, третьему превращению при отпуске стали, которое имеет наз-ие «карбидное превращение»?
- •14. Чем отличается структура сорбита отпуска стали у8 от сорбита, получаемого при распаде переохлажденного аустенита? Как эти отличия сказываются на мех-ие св-ва стали?
- •1 6. Отпуск пружинной стали 65г проведен при 420-440ºС. Какую структуру имеет сталь в таком состоянии? Какие превращения при отпуске обеспечили получение такой структуры?
- •17. Какую структуру имеет сталь 45 после отпуска в составе улучшения? Какие превращения при отпуске обеспечивают получение такой структуры? Какие св-ва соответствуют такому структурному состоянию?
- •18. Какую цель преследует многократный (2-3 раза) отпуск быстрорежущей стали?
- •19. Каков механизм появления вторичной твердости при отпуске быстрорежущей стали?
- •20. Что понимается под понятием «вторичная закалка» при отпуске быстрорежущей стали. Почему она оказывается возможной при 1-м, 2-м и даже 3-м отпуске?
- •22. Предложите принципиально возможные способы предотвращения обратимой отпускной хрупкости легированных сталей.
11. В чем заключается отличие понятий “отдых” и “возврат” холодно-деформированного металла? Дайте краткую хар-ку процессов “отдыха”.
Возврат – является дорекристаллизационным процессом и включают в себя отдых, полигонизацию и рекристаллизацию на месте. Возврат обеспечивает тонкого кристаллического строения в каждом зерне поликрист. материала, не изменяя зеренное строение металла в целом.
Отдых иногда наз-ют возвратом первого рода. Отдых не вызывает видимых изменений в структуре, не происходит изменения мех-их св-в. При отдыхе самые тонкие изменения в структуре металла.
Различают 3 механизма отдыха:
- 1-ый механизм - имеется вакансия, а атом, находящийся рядом с ней перемещается на свободное место, происходит аннигиляция точечных дефектов, уменьшается свободная энергия.
- 2-ой – вакансии очень быстро перемещаются, они могут встречаться в одном месте и образовывать бивакансии, тривакансии.
- 3-ий – образованные би и три вакансии еще более подвижны, они аннигилируют на поверхность металла и исчезают, в результате уменьшается объем металла.
12. В чем заключается отличие понятий «полигонизация» и «рекристаллизация на месте»? Что между ними общего? Дайте краткое опр-ие понятия «рекристаллизация на месте».
Полигонизация и рекристаллизация на месте относятся к процессу возврата. Они связаны с изменением тонкого кристаллического строения деформированного металла и не оказывают влияния на зернистое строение.
Полигонизация – это перераспределение дислокаций, которое приводит к образованию неких областей в кристалле, внутри которых дислокации нет, но эти области отделены друг от друга дислокационными линиями.
Рекрист-ия на месте происходит после полигонизации – это процессы по укрупнению субзерен, что приводит к увеличению разориентировки на субзеренных границах.
13. Что наз-ся термодинамическим стимулом развития процессов рекристаллизации? В чем заключается различия процессов первичной и вторичной рекристаллизации?
Термодинамическим стимулом как первичной, так и вторичной рекрист-ии является избыточная энергия.
Первичная – процесс замены в одной фазе одних зерен другими за счет возникновения и движения новых границ с большими углами разориентировки .
Она проходит в 2 стадии:
1. зарождение высокоугловых границ (дислокации стягиваются в одну плоскость и их плотность становится велика);
2. миграция границ (мигрирует в ту сторону, где более высокая плотность дислокаций).
Формируется мелкое зерно с кривыми границами.
Вторичная – проходит после собирательной. Между зернами граница может оказаться не стабильной и расформироваться на несколько малоугловых субзеренных границ. Зерна после расформирования границы объединяются, что приводит к росту зерна. Могут объединяться сразу несколько зерен и в структуре можно увидеть очень крупные зерна. Далее происходит выравнивание границ и устанавливается равновесие в тройных стыках. Мелкие зерна исчезают, и структура становится боле грубой.
14. Если t-ра плавления технического Al 660оС. Опр-те t-ру рекристаллизационного отжига для получения мелкозернистого Al технической чистоты с высокими пластическими хар-ми. Как быстро нужно нагревать изделие до t-р отжига и как следует его охладить? Почему принимаются Ваши решения?
Трекр.отж.=Тпр.+(100-150); Тпр=КТпл.=0,25∙660=165оС, где К – коэф-т для чистых ме. принимают 0,3-0,25.
Тпл = 660 – t-ра плавления.
Трекр.отж.=165+(100-150)=265-315 оС
Технический Al отжигают при t=350-420ºC с небольшой выдержкой (т.к. необходимо получить мелкозернистую структуру) и охл-ют на воздухе. Необходимо ускорить нагрев до t-ры отжига, что обеспечит одновременное образование зародышей рекристал-ии по всему объему металла и исключает формирование вытянутых рекристаллизованных зерен.