
- •1 Москва 2' «машиностроение» I 19 7 7
- •Глава 1
- •1.1. Понятия о пластической деформации
- •1.2. Строение металлов
- •1 Кроме атомов, расположенных на поверхности тела, на границах зерен и внутри зерен при нарушении в них правильности кристаллического строения (см. Стр. 21).
- •1.3. Холодная пластическая деформация монокристалла
- •1.4. Элементы теории дислокаций
- •1.4.5. Скорость движения дислокаций
- •1.4.6. Взаимодействие дислокаций
- •2 М. В. Сторожев 33
- •1.5. Холодная пластическая деформация поликристалла
- •1.6. Упрочнение при холодной деформации
- •1.7. Кривые упрочнения
- •Глава 2
- •2.1. Деформация при повышенных температурах;
- •2.2. Виды деформации при обработке металлов давлением
- •2.3. Влияние температуры на сопротивление деформированию и пластичность
- •2.4. Влияние горячей деформации на свойства металла
- •2.5. Условие постоянства объема
- •2 Это так называемый закон наличия упругой деформации при пластическом деформировании.
- •2.6. Степень деформации и смещенный объем
- •3 М. В. Сторожев 65
- •2.7. Скорость деформации
- •2.8. Влияние скорости деформации на пластичность и сопротивление деформированию
- •2.9. Сверхпластичность
- •Глава 3 напряжения
- •3.1. Общие понятия
- •3.2. Напряжения в координатных площадках
- •3.3. Напряжения в наклонной площадке
- •3.4. Главные нормальные напряжения
- •3.5. Понятие о тензоре напряжений
- •3.6. Эллипсоид напряжений
- •3.7. Главные касательные напряжения
- •3,8. Октаэдр и чес кие напряжения
- •3.9. Диаграмма напряжений мора
- •4 М. В. Сторожев 97
- •3.10. Условия равновесия для объемного напряженного состояния
- •3.11. Осесимметричное напряженное состояние
- •3.12. Плоское напряженное и плоское
- •Глава 4
- •4.1. Компоненты перемещений и деформаций в элементарном объеме
- •4.2. Неразрывность деформаций
- •4.3. Скорости перемещений и скорости деформаций
- •4.4. Однородная деформация
- •Глава 5
- •5.1. Условие пластичности
- •5.2. Физический смысл условия пластичности
- •5.3. Геометрический смысл энергетического условия пластичности
- •5.4. Частные выражения условия пластичности
- •5.5. Влияние среднего по величине главного нормального напряжения
- •5.6. Связь между напряжениями и деформациями при пластическом деформировании
- •5.7. Механическая схема деформации
- •5.8. Принцип подобия
- •5.9. Контактное трение при пластическом деформировании
- •5.9.1S Особенности пластического трения
- •5,9.2. Факторы, влияющие на величину сил контактного трения
- •6 М. В. Сторожев 161
- •5.9.3. Определение касательного напряжения на контактной поверхности
- •5.10. Принцип наименьшего сопротивления
- •5.11. Неравномерность деформаций
- •1 В литературе иногда вместо термина «остаточные напряжения» применяют неправильный термин «внутренние напряжения», не считаясь с тем, что «внешних» напряжений не существует.
- •Глава 6
- •6.1. Общие положения
- •1 Интеграл (6.1) можно также записать в форме f
- •6.2. Решение дифференциальных уравнений равновесия совместно с условием пластичности
- •6.3. Основы метода расчета деформирующих усилий по приближенным уравнениям равновесия и условию пластичности
- •6.4. Метод линий скольжения
- •1 Более точные доказательства см. В работах [34, 73, из]. 7 м. В. Сторожев
- •1 Строгий вывод системы (6.22) см. В работах [33, 34, 1031.
- •2 Изложение методов численного интегрирования уравнений характеристик выходит за пределы настоящего учебника и требует от читателя знаний по математике, превышающих программу втузов.
- •6.5. Понятие о методе верхней оценки*
- •6.6. Метод сопротивления материалов пластическим деформациям
- •6.7. Метод баланса работ
- •6.8. Понятие о визиопластическом методе
- •1 Желающим изучить метод рекомендуем обратиться к литературе [102].
- •2 Примеры решений, выполненных визиопластическим методом, см. В работе [106].
- •6.9. Краткое сопоставление различных методов
- •7.1. Осадка
- •1 Здесь, как и везде в этой книге, принимается алгебраическая величина напряжений.
- •1 Берем далее абсолютные величины напряжений, поскольку знак минус для удельных усилий (средних давлений) не имеет значения, т. Е. Их можно считать всегда положительными.
- •1 Формула (7.22) приведена в [108] в другой, несколько более сложной форме. 9 м. В. Сторожев 257
- •7.2. Толстостенная труба под равномерным давлением
- •7.3. Протяжка
- •7,3.2, Протяжка заготовки круглого сечения
- •7.4. Выдавливание
- •10 М. В. Сторожев
- •7.5. Прошивка
- •7.5.2. Удельное усилие деформирования при внедрении пуансона в полупространство
- •11 М. В. Сторожен 321
- •2K Точка х
- •2 Подробнее см. В работе
- •7.7. Скручивание
- •Глава 8
- •8.1. Дополнительные данные по методике анализа
- •8.2. Гибка
- •8.3. Вытяжка без утонения стенки
- •8.4. Отбортовка
- •8.5. Обжим
- •8.6. Вытяжка с утонением стенки
- •8.7. Вырубка и пробивка
- •174, 320 Гун г. 229 Давиденков н. Н. 6 Де—Пьер в. 165
- •247, 257, 263, 280, 306 Фангмайер э. 288 Форд X. 216 Франк ф. К. 29, 32 Френкель я. И. 21 Хан в. 314
- •288, 342 Ходж ф. Р. 185, 203, 288 Христиапович с. А. 6, 185, 193
- •287, 320, 330, 358 Штэк э. 314 Эйлер л. 364 Эйсбейн в. 288 Эйхингер а, 94
1.6. Упрочнение при холодной деформации
Пластическая деформация приводит к значительному изменению механических, физических и химических свойств металла. В деформируемом металле с увеличением степени деформации увеличиваются все показатели сопротивления деформированию: пределы упругости, пропорциональности, текучести и прочности. Увеличивается также твердость металла. Одновременно с этим наблюдается уменьшение показателей пластичности (относительное удлинение, относительное сужение, ударная вязкость); увеличивается электрическое сопротивление, уменьшаются сопротивление коррозии, теплопроводность, изменяются магнитные свойства ферромагнитных металлов и т. п. Совокупность явлений, связанных с изменением механических и физико-химических свойств металлов в процессе пластической деформации, называется упрочнением (наклепом). До настоящего времени физическая природа упрочнения полностью не выяснена.
Изменение механических свойств металлов и, в частности, увеличение их прочностных характеристик, как указано ранее, в значительной степени объясняется возрастающим по мере деформирования сопротивлением смещению дислокаций.
Одними
из основных участков повышенного
сопротивления смещению дислокаций
являются участки пересечения плоскостей
скольжения, на которых взаимодействие
силовых полей дислокаций, перемещающихся
по пересекающимся плоскостям, приводит
к их «застреванию» и к последующему
скоплению около них дислокаций
одинакового знака. Наглядным подтверждением
сказанного является то, что монокристаллы
с гексагональной кристаллической
решеткой (одна плоскость скольжения)
упрочняются значительно менее
интенсивно, чем монокристаллы с кубической
кристаллической решеткой, имеющие
несколько плоскостей скольжения. В
то же время можно полагать, что границы
зерен в поликристалле являются
значительными препятствиями для выхода
дислокаций и способствуют скоплению
около них дислокаций одного знака, а
следовательно, и более интенсивному
упрочнению. Последнее подтверждается
тем, что для металлов с гексагональной
решеткой кривые напряжение — деформация
для поликристаллического металла и
монокристалла резко различаются
(рис. 1.24).
во
Рис. 1.24
В то же время для металлов с кубической решеткой такой разницы не наблюдается, очевидно, вследствие того, что и монокристалл имеет значительное количество возможных плоскостей скольжения, а следовательно, и препятствий для прохождения дислокаций.
Однако можно полагать, что упрочнение является следствием не только увеличения сопротивления смещению дислокаций по мере деформирования. Влияют на изменение механических свойств при упрочнении и блокообразование, и искривление плоскостей скольжения, и появление «обломков» кристаллов в пачках скольжения (резкий поворот отдельных ячеек блоков мозаики).
Кроме того, рядом исследований показано, что на изменение прочностных свойств в процессе деформирования сплавов, имеющих метастабильные структуры некоторых составляющих, оказывает влияние изменение структурного состояния этих фаз.
По представлениям С. Т. Кишкина [35], в процессе пластической деформации стали по плоскостям скольжения выделяются субмнкроскопические частицы (карбиды), блокирующие сдвиги и способствующие упрочнению металла.
С. Т. Конобеевский и М. А. Захарова [79 ] рентгенографическим методом обнаружили, что в процессе деформации твердого раствора меди в алюминии происходит распад этого раствора с выделением дисперсных частиц по плоскостям скольжения.
С. С. Носырева и М. В. Буракова [59] наблюдали превращение переохлажденного аустенита в мартенсит по плоскостям скольжения в процессе пластической деформации.
Выделение субмикроскопических частиц по плоскостям скольжения, очевидно, является следствием значительного увеличения температуры по этим плоскостям и в малых объемах, прилегающих к ним.
Повышение температуры является дополнительным источником энергии, необходимой для протекания диффузионных процессов и, в частности, для коагуляции и выпадения карбидов на плоскостях скольжения.
Изменениями в строении металла и взаимном расположении атомов решетки объясняют и другие изменения свойств металлов в результате пластической деформации.