
- •1 Москва 2' «машиностроение» I 19 7 7
- •Глава 1
- •1.1. Понятия о пластической деформации
- •1.2. Строение металлов
- •1 Кроме атомов, расположенных на поверхности тела, на границах зерен и внутри зерен при нарушении в них правильности кристаллического строения (см. Стр. 21).
- •1.3. Холодная пластическая деформация монокристалла
- •1.4. Элементы теории дислокаций
- •1.4.5. Скорость движения дислокаций
- •1.4.6. Взаимодействие дислокаций
- •2 М. В. Сторожев 33
- •1.5. Холодная пластическая деформация поликристалла
- •1.6. Упрочнение при холодной деформации
- •1.7. Кривые упрочнения
- •Глава 2
- •2.1. Деформация при повышенных температурах;
- •2.2. Виды деформации при обработке металлов давлением
- •2.3. Влияние температуры на сопротивление деформированию и пластичность
- •2.4. Влияние горячей деформации на свойства металла
- •2.5. Условие постоянства объема
- •2 Это так называемый закон наличия упругой деформации при пластическом деформировании.
- •2.6. Степень деформации и смещенный объем
- •3 М. В. Сторожев 65
- •2.7. Скорость деформации
- •2.8. Влияние скорости деформации на пластичность и сопротивление деформированию
- •2.9. Сверхпластичность
- •Глава 3 напряжения
- •3.1. Общие понятия
- •3.2. Напряжения в координатных площадках
- •3.3. Напряжения в наклонной площадке
- •3.4. Главные нормальные напряжения
- •3.5. Понятие о тензоре напряжений
- •3.6. Эллипсоид напряжений
- •3.7. Главные касательные напряжения
- •3,8. Октаэдр и чес кие напряжения
- •3.9. Диаграмма напряжений мора
- •4 М. В. Сторожев 97
- •3.10. Условия равновесия для объемного напряженного состояния
- •3.11. Осесимметричное напряженное состояние
- •3.12. Плоское напряженное и плоское
- •Глава 4
- •4.1. Компоненты перемещений и деформаций в элементарном объеме
- •4.2. Неразрывность деформаций
- •4.3. Скорости перемещений и скорости деформаций
- •4.4. Однородная деформация
- •Глава 5
- •5.1. Условие пластичности
- •5.2. Физический смысл условия пластичности
- •5.3. Геометрический смысл энергетического условия пластичности
- •5.4. Частные выражения условия пластичности
- •5.5. Влияние среднего по величине главного нормального напряжения
- •5.6. Связь между напряжениями и деформациями при пластическом деформировании
- •5.7. Механическая схема деформации
- •5.8. Принцип подобия
- •5.9. Контактное трение при пластическом деформировании
- •5.9.1S Особенности пластического трения
- •5,9.2. Факторы, влияющие на величину сил контактного трения
- •6 М. В. Сторожев 161
- •5.9.3. Определение касательного напряжения на контактной поверхности
- •5.10. Принцип наименьшего сопротивления
- •5.11. Неравномерность деформаций
- •1 В литературе иногда вместо термина «остаточные напряжения» применяют неправильный термин «внутренние напряжения», не считаясь с тем, что «внешних» напряжений не существует.
- •Глава 6
- •6.1. Общие положения
- •1 Интеграл (6.1) можно также записать в форме f
- •6.2. Решение дифференциальных уравнений равновесия совместно с условием пластичности
- •6.3. Основы метода расчета деформирующих усилий по приближенным уравнениям равновесия и условию пластичности
- •6.4. Метод линий скольжения
- •1 Более точные доказательства см. В работах [34, 73, из]. 7 м. В. Сторожев
- •1 Строгий вывод системы (6.22) см. В работах [33, 34, 1031.
- •2 Изложение методов численного интегрирования уравнений характеристик выходит за пределы настоящего учебника и требует от читателя знаний по математике, превышающих программу втузов.
- •6.5. Понятие о методе верхней оценки*
- •6.6. Метод сопротивления материалов пластическим деформациям
- •6.7. Метод баланса работ
- •6.8. Понятие о визиопластическом методе
- •1 Желающим изучить метод рекомендуем обратиться к литературе [102].
- •2 Примеры решений, выполненных визиопластическим методом, см. В работе [106].
- •6.9. Краткое сопоставление различных методов
- •7.1. Осадка
- •1 Здесь, как и везде в этой книге, принимается алгебраическая величина напряжений.
- •1 Берем далее абсолютные величины напряжений, поскольку знак минус для удельных усилий (средних давлений) не имеет значения, т. Е. Их можно считать всегда положительными.
- •1 Формула (7.22) приведена в [108] в другой, несколько более сложной форме. 9 м. В. Сторожев 257
- •7.2. Толстостенная труба под равномерным давлением
- •7.3. Протяжка
- •7,3.2, Протяжка заготовки круглого сечения
- •7.4. Выдавливание
- •10 М. В. Сторожев
- •7.5. Прошивка
- •7.5.2. Удельное усилие деформирования при внедрении пуансона в полупространство
- •11 М. В. Сторожен 321
- •2K Точка х
- •2 Подробнее см. В работе
- •7.7. Скручивание
- •Глава 8
- •8.1. Дополнительные данные по методике анализа
- •8.2. Гибка
- •8.3. Вытяжка без утонения стенки
- •8.4. Отбортовка
- •8.5. Обжим
- •8.6. Вытяжка с утонением стенки
- •8.7. Вырубка и пробивка
- •174, 320 Гун г. 229 Давиденков н. Н. 6 Де—Пьер в. 165
- •247, 257, 263, 280, 306 Фангмайер э. 288 Форд X. 216 Франк ф. К. 29, 32 Френкель я. И. 21 Хан в. 314
- •288, 342 Ходж ф. Р. 185, 203, 288 Христиапович с. А. 6, 185, 193
- •287, 320, 330, 358 Штэк э. 314 Эйлер л. 364 Эйсбейн в. 288 Эйхингер а, 94
6.2. Решение дифференциальных уравнений равновесия совместно с условием пластичности
Этот метод заключается в совместном решении системы из дифференциальных уравнений равновесия и уравнения, выражающего условие пластичности. Уравнения пишут в форме (для объемного, осесимметричного, плоского напряженного состояний, плоского деформированного состояния) и в координатах (прямоугольных, цилиндрических, полярных, сферических), отвечающих условиям рассматриваемой конкретной задачи.
Произвольные постоянные определяют из граничных условий. При наличии трения необходимо задать условия трения, определяющие касательные напряжения на поверхностях контакта. Условия трения принимают практически только в двух формах: либо контактные касательные напряжения считают независимыми от координаты, по которой они направлены, т. е. постоянными [см. выражение (5.46)1, либо их считают пропорциональными нормальным напряжениям на поверхности контакта [см. выражение (5.44)1.
Если задача представляется статически неопределимой, то дополнительно используют уравнения связи между напряжениями и деформациями и уравнения неразрывности деформаций.
Решение в принципе должно дать величину и распределение напряжений по всему объему тела, т. е. значения напряжений как функции координат точек тела, в том числе и лежащих на поверхности, непосредственно воспринимающей активное усилие. К сожалению, такое решение возможно лишь в отдельных частных случаях и то при отсутствии (или в предположении отсутствия) сил трения на контактных поверхностях.
Разберем теперь возможности решения дифференциальных уравнений равновесия для различных видов пластически напряженного состояния.
При объемном напряженном состоянии мы располагаем тремя уравнениями равновесия (3.38), в которые входят шесть неизвестных (три нормальных и три касательных напряжения) и условие пластичности (5.5), заключающее те же неизвестные.
В этом случае в четырех уравнениях шесть неизвестных, и задача дважды статически неопределима. Дополнительно можно использовать уравнения связи между напряжениями и деформациями и уравнения неразрывности деформаций, которые внесут, однако, новые неизвестные (шесть деформаций и модуль пластичности). В результате можно получить 13 уравнений с 13 неизвестными [31. Однако, несмотря на то, что количество неизвестных будет соответствовать числу уравнений, практически решение этой системы невозможно.
Таким образом, объемная задача в общем виде (шесть напряжений, каждое из которых есть функция трех координат) является пока неразрешимой.
Для осесимметричного напряженного состояния есть два уравнения равновесия (3.39), содержащие четыре неизвестных, и условие пластичности (5.14), в которое входят те же неизвестные. Таким образом, осесимметричная задача так же, как и объемная, статически неопределима, и для решения ее требуется привлечение уравнений связи между напряжениями и деформациями (четыре уравнения, которые внесут четыре новых неизвестных) и уравнение совместимости деформаций. Всего получим восемь уравнений с восемью неизвестными. Отсюда следует, что осесимметричная задача значительно проще объемной. Однако точные замкнутые решения этой задачи существуют только для отдельных частных случаев, когда касательное напряжение на контактной поверхности или отсутствует, или зависит только от одной из двух координат, входящих в условия равновесия.
Для плоского напряженного и плоского деформированного состояний располагаем двумя уравнениями равновесия (3.50) в декартовых координатах или (3.51) в полярных координатах и условием пластичности (5.10) или (5.12). В этих трех уравнениях содержится три неизвестных. Таким образом, число уравнений соответствует числу неизвестных. Тем не менее для системы уравнений этой задачи существуют точные замкнутые решения тоже лишь для частных случаев при касательных напряжениях на контактной поверхности, равных нулю или не зависящих от одной из двух координат, входящих в уравнения равновесия.
К числу осесимметричных и плоских задач, для которых метод интегрирования дифференциальных уравнений равновесия совместно с условием пластичности дает при вышеуказанных предпосылках точные замкнутые решения, например, относятся: пластическое равновесие толстостенной трубы под действием внутреннего и внешнего давлений (А. Надаи [56]), сжатие бесконечной полосы между шероховатыми плитами при тк = const (Л. Прандтль [103]), сжатие клина (А. Надаи [56]), равновесие пластической массы, заполняющей форму конуса (В. В. Соколовский [91]), осадка без трения толстостенной трубы, замкнутой в матрицу (Л. Г. Степан-ский [94]), и др.