Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_po_anatomii.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
367.62 Кб
Скачать
  1. Основные пищеварительные ферменты

Все ферменты пищеварительного тракта делятся на 3 группы:1)протеазы- ферменты,которые расщепляют белки.2)амилаза и мальтаза- ферменты,которые действуют на углеводы.3)липаза-фермент,который действует на жиры.

  1. Всасывание питательных веществ

В организм должны поступать питательные вещества, основными питательными веществами являются белки, углеводы, жиры, а также минеральные соли, вода, витамины. Все эти питательные вещества являются источником энергии и также строительным материалом( используется для роста и построения новых клеток). Питательные вещества в организм поступают с пищей, но в том видео, в каком они находится в пищи они не могут быть организмом и не всасываются, они должны предварительно расщепиться. Только вода, минеральные соли, витамины усваиваются и всасываются.

Расщепление белков, жиров, углеводов происходит под действием ферментов(ферменты находятся в соках пищеварительных желез).

Белки расщепляются до аминокислот. В тканях из этих аминокислот строятся специфические белки для данной ткани, данного организма, данного индивидуума.

Углеводы поступают в организм в виде полисахарида( крахмал).А всасываются в виде моносахарида(глюкоза, фруктоза).

Самым богатым энергетическим материалом является жиры : жиры в пищеварительном тракте расщепляются до жирных кислот и глицерина.

  1. Строение и значение органов выделения

Легкие выводят из организма углекислый газ, пары воды, некоторые летучие вещества, например пары эфира, хлороформа при наркозе, пары алкоголя при опьянении. Потовыми железами удаляются вода и соли, небольшие количества мочевины, мочевой кислоты, а при напряженной мышечной работе — молочная кислота. Слюнные и желудочные железы выделяют некоторые тяжелые металлы, ряд лекарственных веществ, чужеродные органические соединения. Важную экскреторную функцию выполняет печень, удаляя из крови гормоны (тироксин, фолликулин), продукты расщепления гемоглобина, азотистого метаболизма и многие другие вещества. Поджелудочная железа и кишечные железы выводят соли тяжелых металлов, лекарственные вещества. Однако основная роль в процессах выделения принадлежит специализированным органам — почкам. К важнейшим функциям почек относится участие в регуляции: 1) объема крови и других жидкостей внутренней среды, 2) постоянства осмотического давления крови и других жидкостей тела, 3) ионного состава жидкостей внутренней среды и ионного баланса организма, 4) кислотно-щелочного равновесия, 5) выведения из организма конечных продуктов азотистого обмена и чужеродных веществ. Таким образом, почки являются органом, обеспечивающим гомеостаз внутренней среды организма.

Почки - парные органы, расположенные в брюшной полости с обеих сторон позвоночника. Правая почка лежит несколько ниже левой. Они имеют бобовидную форму, вогнутый край их обращен к позвоночнику и имеет выемку - ворота почек, где проходят кровеносные и лимфатические сосуды, нервы и мочеточник. Почка покрыта капсулой из соединительной ткани. На разрезе почки выделяют два слоя: наружный темно-красный - корковый, в котором расположены почечные тельца, и внутренний, более светлый - мозговой, в котором проходят почечные канальцы. Канальцы образуют пирамиды, разделенные прослойками коркового вещества. Расширенной частью пирамиды прилегают к корковому веществу, вершиной - к центру почки, где располагается почечная лоханка. Ее суженный конец переходит в мочеточник, который впадает в мочевой пузырь.

Нефрон - структурная и функциональная единица почки. В его состав входит капсула Шумлянского, состоящая из однослойного эпителия и образующая двухслойную чашу. В эту чашу погружен Мальпигиев клубочек, имеющий около 50 капиллярных петель. Между стенками капсулы находится полость, от которой в корковом слое начинается извитой мочевой каналец первого порядка. Выпрямляясь, он переходит в мозговой слой. Здесь каналец образует петлю Генле и вновь возвращается в корковое вещество, переходя в извитой каналец второго порядка. В дальнейшем он выпрямляется и впадает в собирательную трубочку. Трубочки сливаются друг с другом и открываются общими протоками на вершинах пирамид почечными сосочками.

  1. Строение почек Почка представляет парный секреторный орган, вырабатывающий мочу и некоторые гормоны (ренин, простагландины). Расположены почки на задней стенке брюшной полости (в забрюшинном пространстве) по бокам позвоночника на уровне XII го грудного и I-II-го поясничных позвонков. Правая почка лежит на 1-1,5 см ниже левой. Почки имеют бобовидную форму,в них различают два полюса - верхний (шире) и нижний (уже), поверхности - переднюю (выпуклую) и заднюю (плоскую), два края - латеральный (выпуклый) и медиальный (вогнутый). В области медиального края расположены ворота почки, которые ведут в углубление - пазуху почки. Через ворота входят почечная артерия и нервы; выходят почечная вена, мочеточник и лимфатические сосуды. Пазуха почки содержит почечную лоханку, от которой берет начало мочеточники. На разрезе почки видно, что ее ткань состоит из двух слоев: наружного -коркового вещества, красно-бурого цвета, толщиной 5-7 мм, и внутреннего, более плотного и светлого -мозгового вещества.Корковое вещество глубоко проникает в мозговое вещество и делит его на 15-20 почечных пирамид, обращенных вершинами внутрь почки. Вершины 2-3 пирамид, сливаясь, образуют сосочек. В каждой почке насчитывается 7-8 сосочков. На вершине сосочка имеется 10―20 мельчайших сосочковых отверстий. Сосочек охвачен малой чашечкой, представляющей собой начало мочевыводящих путей. Иногда в одну чашечку об ращены 2-3 сосочка, соединенных вместе; т. е. число малых чашек (чаще 7-8) может быть меньше числа сосочков. Сливаясь друг с другом, малые чашечки образуют 2-3 большиепочечные чашки, которые соединяются вместе и формируют почечную лоханку. Она выходит через ворота позади почечных сосудов и, загибаясь вниз, переходит тотчас ниже ворот почки в мочеточник.

  2. Строение нефрона Основной морфологической и функциональной единицей почки является нефрон. Нефрон ― это почечное тельце и каналец. В каждой почке более 1 млн нефронов и в каждом нефроне образуется окончательная моча. Нефрон состоит из сосудистого клубочка (сосуды общей кровеносной системы). Начинается нефрон с почечного (мальпигиева) тельца, которое содержит клубочек кровеносных капилляров. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена. Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев.  Проксимальный отдел канальцев начинается извитой частью, которая переходит в прямую часть канальца. Клетки проксимального отдела имеют щеточную каемку из микроворсинок, обращенных в просвет канальца. Затем следует тонкая нисходящая часть петли Генле, стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона. Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в собирательные трубочки. Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

  3. Образование мочи. Образование мочи происходит в системе почечных канальцев, составляющих основную часть почечной ткани. Оно происходит в две фазы: 1)Фильтрация(зависит от давления в пучках) Первый этап образования мочи в почках начинается с фильтрации плазмы крови в почечных клубочках. При этом жидкая часть крови проходит через стенку капилляров в полость капсулы почечного тельца. В полость капсулы из капилляров фильтруется вода и все растворенные в плазме вещества, за исключением крупномолекулярных соединений. Неорганические соли, органические соединения, такие, как мочевина, мочевая кислота, глюкоза, аминокислоты и др. свободно проходят в полость капсулы. Белки с высокой молекулярной массой в норме не проходят в полость капсулы и остаются в крови. Жидкость, профильтровавшаяся в полость капсулы, называется первичной мочой. Почки человека за сутки образуют 150 - 180 литров первичной мочи  2)Реабсорбция Второй этап образования мочи – это обратное всасывание (реабсорбция), протекает в извитых канальцах и петле Генле. Первичная моча, проходя по ним, подвергается процессу обратного всасывания (реабсорбции). Реабсорбция осуществляется пассивно по принципу осмоса и диффузии и активно самим клетками стенки нефрона. Значение этого процесса состоит в том, чтобы вернуть в кровь все жизненно важные вещества и в необходимых количествах и вывести конечные продукты обмена, токсические и чужеродные вещества. В начальном участке нефрона всасываются органические вещества: аминокислоты, глюкоза, низкомолекулярные белки, витамины, ионы Na + , K + , Ca ++ , Mg ++ , вода и многие другие вещества. В последующих участках нефрона всасываются только вода и ионы.  Итогом обратного всасывания является образование вторичной мочи, состав которой очень сильно отличается от первичной мочи. Во вторичной моче высока концентрация мочевины, мочевой кислоты, ионов хлора, магния, натрия, калия, сульфатов, фосфатов, креатинина. Около 95% вторичной мочи составляет вода, 5% - сухой остаток. В сутки образуется около 1,5 литров вторичной мочи

  4. Регуляция деятельности почек. Ведущая роль в регуляции деятельности почек принадлежит гуморальной системе. На работу почек оказывают влияние многие гормоны, главными из которых являются антидиуретический гормон, выделяющийся задней частью гипофиза). Выделение этого гормона регулируется деятельностью гипоталамуса. При поступлении антидиуретического гормона в кровь, усиливается всасывание и уменьшение выделения конечной мочи. Этот гормон повышает проницаемость собирательных трубочек. Недостаток антидиуретического гормона приводит к непроницаемости стенки трубочек и вода в большом количестве выделяется с мочой. Это состояние называется полиурия ( несахарного диабета). На проницаемость солей через трубочки влияет гормон коркового слоя надпочечников ― минералкортикоед, который влияет на обратное всасывание солей. Процесс фильтрации зависит от давления в кровеносных сосудах. Выше давление- увеличение работы мочеточника. Состояние сосудов регулируется нервным путем. Гуморальным за счет адреналина.

34.Нервная ткань, основные свойства, строение нейрона. Структурными элементами нервной ткани являются нервные клетки (нейроны) межклеточное вещество. Выполняет функции раздражимость, возбудимость и проводимость. В нейроне генерирует нервный импульс в ответ на раздражимость. Любое раздражение внешней среды действует на огранизм и в ответ возникает нервный импульс. В этом неверном импульсе закодированы все органы раздражения. Нервная клетка- э то рецептор, который принимает раздражение внешней и внутренней среды. В рецепторе энергия раздражается и переходит в энергию нервного импульса. Изначально нервный импульс возник в рецепторе при раздражении (любом).  Каждый нейрон состоит из клетки (сомы) и отростков (дендритов и аксона). Одни отростки проводят нервные импульсы к клетке (дендриты), другие ― от клетки (аксоны).  Тело нейрона является его трофическим центром, нарушение целости которого ведет клетку к гибели. Тело состоит из ядра и цитоплазмы (нейроплазмы). В нейроплазме, помимо обычных органелл, содержатся специальные органоиды ― нейрофибриллы. Сома окружена мембраной, в которой имеются ионные каналы, которые пропускают свой ион. Работа этих каналов определяется для возникновения потенциала.

36. Функциональная структура клеточной мембраны нейрона, ионные каналы. Нейрон - (от греч. neuron ― нерв), нейрон, нервная клетка, основная функциональная и структурная единица нервной системы, принимает сигналы, поступающие от рецепторов и др. Нейрон перерабатывает их и в форме нервных импульсов передаёт к эффекторным нервным окончаниям, контролирующим деятельность исполнительных органов (мышцы, клетки железы или др.).

37.Потенциал покоя Потенциал покоя.(п.п) ― это разность потенциалов между внешней и внутренней сторонами мембраны в условиях, когда клетка не возбуждена. К возникновению мембранного потенциала покоя приводят два фактора: во-первых, концентрации различных ионов отличаются внешне и внутри клетки, во-вторых, мембрана является полупроницаемой: одни ионы могут через нее проникать, другие - нет. Оба эти явления зависят от наличия в мембране специальных белков: концентрационные градиенты создают ионные насосы, а проницаемость мембраны для ионов обеспечивают ионные каналы. Важнейшую роль в формировании мембранного потенциала играют ионы калия, натрия и хлора. Концентрации этих ионов отличаются по две стороны мембраны.  Ионные каналы, участвующие в образовании п.п имеет выборочную проницаемость, то есть дает возможность проникать только определенному типу ионов. В мембране нейрона в состоянии относительного покоя открыты калиевые каналы (те, что в основном пропускают только калий), большинство натриевых каналов ― закрыты. Внутри клетки K больше, чем снаружи. Из клетки калий выходит наружу, и наружная сторона мембраны заряжается положительно, а внутренняя отрицательно. Потенциал покоя локален, он не распространяется по волокнам. Когда клетка начинает раздражаться, от открываются ионные каналы для Na. Na больше снаружи, чем внутри клетки. Тогда Na идет в клетку, и внутренняя сторона мембраны заряжается положительно, а наружная отрицательно. На мембране меняются полюса - деполяризация. Когда она происходит, возникает потенциал действия

38. Потенциал действия Потенциал действия возникает на мембране электровозбудимых клеток в ответ на раздражение электрическим полем, химическим или другим стимулом. При этом мембрана возбудимой клетки способна увеличивать свою проницаемость к ионам натрия, калия, кальция.  Важнейшими условиями для открывания натриевых каналов и генерации потенциал действия является деполяризация клетки до определенного уровня, называемого критическим, или «пороговым». Только по достижении «пороговой» величины мембранного потенциала (порядка -50 ― -30 мВ) происходит открывание натриевых, а затем и калиевых каналов, и начинается генерация потенциала действия. Другой важнейшей особенностью генерации потенциала действия является существование короткого периода абсолютной и относительной невозбудимости мембраны: в короткий период порядка 1-2 мс после прекращения генерации потенциала действия не удается вызвать новую генерацию потенциала действия. Генерация потенциала действия является не внешним проявлением, а самой сутью феномена возбуждения клетки. Именно с помощью потенциала действия нейроны получают, перерабатывают и передают биологически важную информацию из внешней среды, а также от одной клетки к другой, а мышечные клетки начинают сокращаться, а значит, обеспечивается двигательная активность органов, стенки которых состоят из возбудимых гладкомышечных клеток: сердца, сосудов, пищеварительного тракта. В железистых клетках потенциал действия запускает процесс секреции. Передача импульса от одного нейрона к другому обуславливается через контакт (синопс), который находится между аксоном и дендритом, или аксоном и сомой. Синапсы в виде пузырьков (2 вида: электрические и химические)

39.Строение синапсов(электрические и химические)  Электрические(около 1%) состоят их двух мембран и между ними перемычки белкового происхождения. Передача импульса происходит через синапсы на обе стороны Химические ― две мембраны: 1)пресинаптическая  2)постинаптическая И между ними синаптическая щел. На пресинаптической мембране находятся только пузырьки, в которых находятся вещества ― медиаторы. На постсинаптической мембране находятся только рецепторы воспринимающие медиатр.

40. Механизм передачи сигнала в химическом синапсе В синапсах с химической передачей возбуждение передается с помощью медиаторов — молекул химических веществ — передатчиков, посредников. Медиаторы в зависимости от их природы делят на несколько групп: - моноамины: ацетилхолин, норадреналин, дофамин, серотонин, гнетамин; - аминокислоты: гаммааминомасляная кислота , глютаминовая, аспарагиновая кислоты, глицин, АТФ; - полипептиды, в том числе и нейропептиды: энкефалины, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин. Нервные окончания разделены между собой синаптической щелью. Нервные окончания имеют утолщения, называемые синаптическими бляшками; цитоплазма этих утолщений содержит многочисленные синоптические пузырьки, внутри которых находится медиатор – вещество, с помощью которого нервный сигнал передаётся через синапс. Прибытие нервного импульса вызывает слияние пузырька с мембраной и выход медиатора из клетки. Примерно через 0,5 мс молекулы медиатора попадают на мембрану второй нервной клетки, где связываются с молекулами рецептора и передают сигнал дальше.

41.Основные медиаторы - моноамины: ацетилхолин, норадреналин, дофамин, серотонин, гнетамин; - аминокислоты: гаммааминомасляная кислота , глютаминовая, аспарагиновая кислоты, глицин, АТФ; - полипептиды, в том числе и нейропептиды: энкефалины, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин.

42.Церебральная жидкость (ликвор)  Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.  Процесс ликворообращения в ЦНС включает 3 основных звена:  1). Продукцию (образование) ликвора. Циркуляцию ликвора.  3)Отток ликвора. Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. Цереброспинальная жидкость выполняет в центральной нервной системе защитно-питательные функции: •она предохраняет головной и спинной мозг от механических воздействий  •обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного баланса  •играет определенную роль как посредник между кровью и тканью в отношении питания и обмена веществ мозга (некоторые отработанные мозговой тканью продукты обмена выводятся с цереброспинальной жидкости в венозное русло) Основной объем цереброспинальной жидкости образуется путем:  •активной секреции железистыми клетками сосудистых сплетений желудочков головного мозга •диализ крови через стенки кровеносных сосудов и эпендиму желудочков головного мозга. Цереброспинальная жидкость из боковых желудочков головного мозга (где она образуется сосудистыми сплетениями) поступает в третий желудочек, а затем через сильвиев водопровод в четвертый желудочек, из него в цистерны основания мозга и в субарахноидальное пространство головного мозга. Меньшая часть цереброспинальной жидкости спускается в субарахноидальное пространство спинного мозга.  Циркуляция цереброспинальной жидкости обусловлена:  •перепадами гидростатического давления в ликвороносных путях  •пульсацией внутричерепных артерий  •изменениями венозного давления  •положением тела и др. 

Отток цереброспинальной жидкости:  •происходит в основном через арахноидальные (пахионовы) грануляции (ворсины) в верхний венозный продольный синус  •часть цереброспинальной жидкости оттекает в лимфатическую систему через периневральные пространства черепно-мозговых и спинномозговых нервов

Обновление цереброспинальной жидкости происходит 4-8 раз в сутки, скорость его зависит от:  •суточного режима питания  •водного режима •внутричерепного давления •показателей гемодинамической перфузии головного мозга  •нейроэндокринной регуляции •колебаний активности физиологических процессов и др.

43 Строение спинного мозга, спинномозговые корешки. Спинной мозг (medulla spinalis) - отдел центральной нервной системы человека, расположенный в позвоночном канале. Позвоночный канал образован совокупностью позвоночных отверстий в позвонках. Спинной мозг имеет форму цилиндрического тяжа с внутренней полостью (спинномозговым каналом), и удерживается в постоянном положении при помощи связок. Передний (верхний) конец спинного мозга переходит в продолговатый мозг, а задний (нижний) - в так называемую концевую нить.  Тяж 45см у мужчин, 42см у женщин. Имеет сегментарное строение-31-33 сегмента. И каждый его участок связан опред. частью тела. Нервы спин-мозг. Иннервируют кожу, скелетные мышцы. Иннервация сегментарно ( только иннервируют только свой участок). На поперечном разрезе мы видим, что спинной мозг состоит из белого и серого вещества. Сер.в.- скопление нервных клеток, бел.вещ.- волокна, отростки нейронов. Серое вещество находится в центре, в виде бабочки; а белое-на переферии. Серое вещ.-задние и более толстые передние рога. Зад. Корешки- чувствителье(импульс от рецеп. В спинной мозг), пере корешки-двигательные( от спин. Мозга импульс идет к мышцам).  От каждого сегмента спин. Могза отходят 4 корешка. Выйдя из позвон. канала эти корешки справа и слева соед. И обр. смешанный спинно-мозговой нерв-этот нерв идет к мышцам. 36-37 пар спиннно-мозг. нервов: 8 шейных, 13грудных, 7 поясничных, 3 кресцовых, 5-6 копчиковых. В процессе эволюции обр. 2 утолщения-шейное, поясничное. Спин. мозг покрыт тремя оболочками. нуруж.-твердая мозговая, сред.-паутинная, внутр..-сосудистая. Твердая оболчка представляет собой мешок, покрыв. спин. мозг и корешки. сверху срослась с большим затыл. отверстием. К стенкам позв. канала мешок не примыкает. Между тв. мозговой об. и надкостницей позв. канала имеется пространсто в нем-вены, лимф. сосуды, а пространство заполн. жировыми кл. Внутри от тверд. облочки расположена паутинная обл.-соед-тканная пласт. Между тв. мозг.об. и паутин. имеется щель. А самая внутр. обочка- сосудистая или мягкая обл, в ней сосуды, снабжающие кровью вещество мозга. Между сос. об. и паутин. имеется пространство, в котором содержится спин-мозг жидкость.  Корешки спинного мозга Из переднелатеральной борозды или вблизи неё выходят передние корешковые нити (лат. fila radicularia), представляющие собой аксоны нервных клеток. Передние корешковые нити образуют передний (двигательный) корешок (лат. radix ventralis). Передние корешки содержат центробежные эфферентные волокна, проводящие двигательные импульсы на периферию тела: к поперечно-полосатым и гладким мышцам, железам и др.  В заднелатеральную борозду входят задние корешковые нити, состоящие из отростков клеток, залегающих в спинномозговом узле. Задние корешковые нити образуют задний корешок (лат. radix dorsalis). Задние корешки содержат афферентные (центростремительные) нервные волокна, проводящие чувствительные импульсы от периферии, т.е. от всех тканей и органов тела, в ЦНС. На каждом заднем корешке расположен спинномозговой узел (лат. ganglion spinale). Направление корешков неодинаково: в шейном отделе они отходят почти горизонтально, в грудном — направляются косо вниз, в пояснично-крестцовом отделе следуют прямо вниз[1]. Передний и задний корешки одного уровня и одной стороны тотчас кнаружи от спинномозгового узла соединяются, образуя спинномозговой нерв (лат. n. spinalis), который является, таким образом, смешанным. Каждая пара спинномозговых нервов (правый и левый) соответствует определённому участку — сегменту — спинного мозга. Следовательно, в спинном мозге насчитывается такое количество сегментов, сколько пар спинномозговых нервов.

44 Функции спинного мозга.

Спинной мозг выполняет две основные функции: рефлекторную и проводниковую. Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги, с которыми связано сокращение мышц тела (кроме мышц головы). Пример простейшего двигательного рефлекса — коленный рефлекс. Спинной мозг вместе с головным мозгом регулирует работу мочевого пузыря, половых органов. Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям в головной мозг. Из головного мозга импульсы по нисходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда — к органам. Спинной мозг участвует в поддержании тонуса мышц

45 Основные проводящие пути спинного мозга. Восходящие пути: В спин. мозг через задние корешки поступают импульсы от рец. мышц и кожи. На этом уровне или немного выше переход на против сторону. и дальше импульс проходят через ствол мозга и до норы больш. полушарий. Импульсы от рец. кожи и мышц идут в соматосенсорную зону коры. Которая расположена позади центр. извилины. От проприорец. и рецепторов кожи. Клиновидный пучок и пучок Голя-восходящие пути. Нисходящие пути: Пирамидный путь. начинается в моторной зоне коры( впереди центр. извилины) Крупные пирамид. клетки. Здесь начинается нисходящий. пирамидный путь.Кора-спинной мозг-пред. рога- мышцы.

Экстрапирамидные пути: От красного ядра среднего мозга-руброспинальный путь От ретикулярной формации ствола-ретикулоспин. путь От мозжечка. 46 Собственные рефлексы спинного мозга. 1)Сгибательный (флексорный) рефлекс — рефлекс защитного типа направленный на удаление повреждающего раздражителя (отдергивание руки от горячего). Ахивов рефлекс- подошвен. сгибании кости за счет сокращен. 3-главой стопы( голени) 1-2 кресц.сегмент. подошв. рефлекс 1-2кресц. сегмента 2) разгибательный рефлекс-многократное колен. реф- сокращ. 4-главой мышцы бедра. центр в пояснич. отделе. 3)ритмический реф-многократное повторение сгибат. и разгибат. конечности. например, чесание., потирание 4)рефлекс позы- перераспред. мышц тонуса при изменении положения тела.

47 Продолговатый мозг, строение, функции. Продолговатый мозг (лат. Myelencephalon, Medulla oblongata) — отдел головного мозга. Встречается также традиционное название bulbus (луковица, из-за формы этого отдела). Продолговатый мозг входит в ствол головного мозга. От спинного мозга он ограничен перекрестом пирамид (Decussatio pyramidum) на вентральной стороне, на дорсальной стороне анатомической границы нет (за границу принимается место выхода первых спиномозговых корешков). От моста продолговатый мозг ограничен поперечной бороздой, медуллярными полосками (мозговые полоски, часть слуховых путей) в ромбовидной ямке. Снаружи на вентральной стороне расположены пирамиды (в них пролегает кортикоспинальный тракт — путь от коры к двигательным нейронам спинного мозга) и оливы (внутри них находятся ядра нижней оливы, связанные с поддержанием равновесия). На дорсальной стороне: тонкий и клиновидный пучки, оканчивающиеся бугорками тонкого и клиновидного ядер (переключают информацию глубокой чувствительности нижней и верхней половин тела соответственно), нижняя половина ромбовидной ямки, являющейся дном четвертого желудочка, и отделяющие ее веревочные тела, или нижние ножки мозжечка. Внутри расположены также ядра от VIII до XII (и одно из ядер VII) черепномозговых нервов, часть ретикулярной формации, медиальная петля и другие восходящие и нисходящие пути. Имеет вид усеченного конуса. Функции продолговатого мозга Защитные рефлексы (например, кашель, чихание). Жизненно важные рефлексы (например, дыхание).

Регулирование сосудистого тонуса. Рефлекторные центры продолговатого мозга: пищеварение сердечная деятельность защитная (кашель, чихание и тому подобное) центры регуляции тонуса скелетных мышц для поддержания позы человека. укорочение или удлинение времени спинального рефлекса 48.Задний и средний мозг, строение, функции. задний мозг состоит из варолиева моста и мозжечка. Строение Варолиева моста Варолиев мост, являющийся структурой заднего мозга, имеет вид поперечно лежащего утолщенного валика. Задняя поверхность моста, прикрытая мозжечком, участвует в образовании ромбовидной ямки. Ниже моста находится продолговатый мозг, границей между ними является нижний край моста. Выше моста располагается средний мозг, границей между ними считается верхний край моста. Вентральная поверхность Варолиева моста представляет собой мощную поперечно-волокнистую выпуклость белого вещества. По центру вентральной поверхности моста проходит глубокая борозда- канавка основной артерии мозга. Латерально-вентральная выпуклость переходит в мощные средние ножки мозжечка.

От Варолиевого моста отходят четыре пары черепно-мозговых нервов. V — тройничный нерв; VI — отводящий нерв; VII — лицевой нерв; VIII — предверно-улитковый, или слуховой, нерв. Передняя часть моста состоит из нервных волокон, образующих нисходящие проводящие пути, среди которых находятся клеточные скопления – ядра.  Дорсальная часть моста является непосредственным продолжением продолговатого мозга. В ней располагаются переключательные ядра сенсорных систем, ядра черепно-мозговых нервов и ретикулярной формации.

Функции Варолиева моста. В Варолиевом мосту располагаются центры, управляющие деятельностью мимических, жевательных и одной из глазодвигательных мышц. В Варолиев мост поступают нервные импульсы от рецепторов органов чувств, расположенных на голове: от языка (вкусовая чувствительность), внутреннего уха (слуховая чувствительность и равновесие) и кожи

Строение мозжечка Мозжечок располагается дорсальнее моста, в задней черепной яме, под затылочными полюсами больших полушарий, с которыми его разделяет поперечная щель большого мозга. У мозжечка различают два выпуклых полушария и червь – непарную срединную часть.  Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие длинные листки мозжечка.

В мозжечке различают переднюю, заднюю и клочково-узелковую доли, отделенные более глубокими щелями. Группы листков, отделенных более глубокими сплошными бороздами, образуют дольки мозжечка. Борозды мозжечка сплошные и переходят с червя на полушария, поэтому каждая долька червя связана с правой и левой дольками полушарий. Парный клочок является наиболее изолированной и филогенетически старой долькой полушария. Клочок с каждой стороны прилежит к вентральной поверхности средней мозжечковой ножки и связан с узелком червя ножкой клочка, переходящей в нижний мозговой парус. Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым, как бы ветвится, образуя белые полоски. Нейроны в коре мозжечка располагаются в три слоя: наружный – молекулярный, средний – слой грушевидных нейронов (ганглионарный) и внутренний – зернистый. В молекулярном и зернистом слоях залегают, в основном, мелкие нейроны. Крупные грушевидные нейроны (клетки Пуркинье) располагаются в среднем слое в один ряд. Это эфферентные нейроны коры мозжечка. Дендриты клеток Пуркинье располагаются в поверхностном молекулярным слое, а аксоны направляются к нейронам ядер мозжечка и таламуса. Остальные нейроны коры мозжечка являются вставочными (ассоциативными), они передают импульсы грушевидным нейронам.

Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами мозга, образуют три пары мозжечковых ножек. Нижние ножки соединяют мозжечок с продолговатым мозгом, средние – с мостом, верхние – со структурами среднего, промежуточного и конечного мозга. 5. Функции мозжечка Мозжечок выполняет функции координации быстрых целенаправленных произвольных движений, регуляции позы и мышечного тонуса, поддержания равновесия тела.

мозжечок участвует в регуляции целенаправленных движений, делая их плавными и точными. При повреждении мозжечка и выпадении его функций нарушается соразмерное распределение тонуса мышц – сгибателей и разгибателей, движения становятся несоразмерными, резкими, размашистыми, нарушается анализ сигналов от проприорецепторов мышц и сухожилий, страдают вегетативные функции органов сердечно-сосудистой системы, пищеварительных и других органов. Пластичность функции мозжечка ответственна также за двигательное научение и выработку стереотипных движений, таких как письмо, печатание на клавиатуре. средний мозг Средний мозг (mesencephalon) представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации. Красные ядра располагаются в верхней части ножек мозга. Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах. Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, посылают корригирующие импульсы к мотонейронам спинного мозга по руброспинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению. черное вещество — располагается в ножках мозга, регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти руки, например при письме Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние — слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации.  Четверохолмие организует ориентировочные зрительные и слуховые рефлексы. У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство. функции: Сенсорные функции. Реализуются за счет поступления в него зрительной, слуховой информации.

Проводниковая функция. Заключается в том, что через него проходят все восходящие пути к вышележащим таламусу (медиальная петля, спииноталамический путь), большому мозгу и мозжечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь. Двигательная функция. Реализуется за счет ядра блокового нерва (n. trochlearis), ядер глазодвигательного нерва (п. oculomotorius), красного ядра (nucleus ruber), черного вещества (substantia nigra)

49 .Рефлексы, осуществляемые средним мозгом Рефлексы спинного мозга достаточно просты. По форме это, в основном, сгибательные и разгибательные рефлексы сегментарного характера. Надсегментарные рефлексы, наряду с сегментарными, осуществляются только с помощью шейного отдела. Сгибательные рефлексы - фазные и тонические. Фазные рефлексы - это однократное сгибание конечности при однократном раздражении рецепторов кожи или проприорецепторов. Одновременно с возбуждением мотонейронов мышц-сгибателей происходит реципрокное торможение мотонейронов мышц-разгибателей. Рефлексы, возникающие с рецепторов кожи, имеют защитное значение. Фазные рефлексы с проприорецепторов участвуют в формировании акта ходьбы. Тонические сгибательные (как и разгибательные) рефлексы возникают при длительном растяжении мышц и возбуждении проприорецепторов, их главное назначение - поддержание позы. Тоническое сокращение скелетных мышц является фоновым для осуществления всех двигательных актов, осуществляемых с помощью фазных сокращений мышц. Разгибательные рефлексы, как и сгибательные, бывают фазными и тоническими, возникают с проприорецепторов мышц-разгибателей, являются моносинаптическими. Фазные рефлексы возникают на однократное раздражение мышечных рецепторов, например, при ударе по сухожилию четырехглавой мышцы ниже надколенной чашечки. При этом возникает коленный разгибательный рефлекс вследствие сокращения четырехглавой мышцы. Фазные разгибательные рефлексы участвуют, как и сгибательные, в формирование акта ходьбы. Тонические разгибательные рефлексы представляют собой длительное сокращение мышц-разгибателей при длительном растяжении их сухожилий. Их роль - поддержание позы. В положении стоя тоническое сокращение мышц-разгибателей предотвращает сгибание нижних конечностей и обеспечивает сохранение вертикальной естественной позы. Тоническое сокращение мышц спины удерживает туловище в вертикальном положении, обеспечивая осанку человека. Тонические рефлексы на растяжение мышц (сгибателей и разгибателей) называют также миотатическими. Рефлексы позы - перераспределение мышечного тонуса, возникающее при изменении положения тела или отдельных его частей. Рефлексы позы осуществляются с участием различных отделов ЦНС. При наклоне головы вниз (вперед) увеличиваются тонус мышц-сгибателей передних конечностей и тонус мышц-разгибателей задних конечностей, в результате чего передние конечности сгибаются, а задние разгибаются. При наклоне головы вверх (назад) возникают противоположные реакции - передние конечности разгибаются вследствие увеличения тонуса их мышц-разгибателей, а задние конечности сгибаются вследствие повышения тонуса их мышц-сгибателей. Эти рефлексы возникают с проприорецепторов мышц шеи и фасций, покрывающих шейный отдел позвоночника.  Вторая группа шейных позных рефлексов возникает с тех же рецепторов, но только при поворотах или наклоне головы вправо или влево. При этом повышается тонус мышц-разгибателей обеих конечностей на стороне, куда повернута (наклонена) голова, и повышается тонус мышц-сгибателей на противоположной стороне. Рефлекс направлен на сохранение позы, которая может быть нарушена вследствие смещения центра тяжести в сторону поворота (наклона) головы - именно на этой стороне повышается тонус мышц-разгибателей обеих конечностей. Ритмические рефлексы - многократное повторное сгибание и разгибание конечностей. Примером этих рефлексов может быть шагательный рефлекс. Когда мышца (сгибатель или разгибатель) расслаблена и удлинена, возбуждаются мышечные веретена, импульсы от них поступают к своим амотонейронам спинного мозга и возбуждают их. Далее амотонейроны посылают импульсы к этой же скелетной мышце, что ведет к ее сокращению. Как только мышца сократилась, возбуждение мышечных веретен прекращается или сильно ослабевает (они уже не растянуты), начинают возбуждаться сухожильные рецепторы. Возбуждение тормозных клеток вызывает торможение осмотонейронов этой же скелетной мышцы, вследствие чего она расслабляется. Однако ее расслабление (удлинение) ведет снова к возбуждению мышечных веретен и амотонейро сокращается. Вследствие ее сокращения возбуждаются сухожильные рецепторы и тормозные клетки в спинном мозге, что вновь ведет к расслаблению скелетной мышцы. Мышца поочередно сокращается и расслабляется в результате поступления к ее мотонейронам импульсов от собственных рецепторов. Описанные процессы в равной степени относятся и к мышце-сгибателю, и к мышце-разгибателю. При этом расслабление скелетной мышцы запускает механизмы ее сокращения, а сокращение скелетной мышцы активирует механизмы, расслабляющие мДля обеспечения поочередного сгибания и разгибания конечностей при шагательном рефлексе мышцы-сгибатели и разгибатели должны сокращаться и расслабляться последовательно друг за другом, что достигается с помощью торможения центра-антагониста при возбуждении центра агониста.ышцу.

50 Восходящие и нисходящие пути ствола мозга. Восходящие пути: специфичные/неспец.

Спец. восх. пути: передают импульсы от проприорец. мышц, кожных рец, эти импульсы поступили через задние корешки спин. мозга, они прошли весь спинной мозг, далее в ствол, в сомато-сенсорн зону коры(сзади центр. извилины) От зрительн. рецепторов импульс поступает в продолговат. мозг по зрит. нерву, в зрительную зону коры ( затылочную область №17) От слух. рец, по нерву слуха и равновесия (8 нерв), входят на уровне моста, в височную область коры (поле №41)

Неспец. восход. пути: От всех рец., они проходят через ядра ретикулярной формации( наход. в стволе мозга, на уровне продол. мозга и моста). Импульсы, которые пройдут через РФ пойдут во все области коры, кроме обонятельного пути.

Нисходящие пути. Пирамидный путь. Идет от моторной коры( впереди центр. извилины(поле№4), проходит весь ствол, в спин. мозг, и выходит через перед. рога спин. мозга к мышцам. Экстрапирамидные пути: От красного ядра.( ножки сред. мозга) От РФ ствола мозга От мозжечка.

51.Специфические и неспецифические пути ствола мозга. Восходящие пути: специфичные/неспец. Спец. восх. пути: передают импульсы от проприорец. мышц, кожных рец, эти импульсы поступили через задние корешки спин. мозга, они прошли весь спинной мозг, далее в ствол, в сомато-сенсорн зону коры(сзади центр. извилины) От зрительн. рецепторов импульс поступает в продолговат. мозг по зрит. нерву, в зрительную зону коры ( затылочную область №17) От слух. рец, по нерву слуха и равновесия (8 нерв), входят на уровне моста, в височную область коры(поле №41) Неспец. восход. пути: От всех рец., они проходят через ядра ретикулярной формации( наход. в стволе мозга, на уровне продол. мозга и моста). Импульсы, которые пройдут через РФ пойдут во все области коры, кроме обонятельного пути.

52. Мозжечок, строение, двигательные функции. Строение мозжечка Мозжечок располагается дорсальнее моста, в задней черепной яме, под затылочными полюсами больших полушарий, с которыми его разделяет поперечная щель большого мозга. У мозжечка различают два выпуклых полушария и червь – непарную срединную часть.  Поверхности полушарий и червя разделяют поперечные параллельные борозды, между которыми расположены узкие длинные листки мозжечка. В мозжечке различают переднюю, заднюю и клочково-узелковую доли, отделенные более глубокими щелями. Группы листков, отделенных более глубокими сплошными бороздами, образуют дольки мозжечка. Борозды мозжечка сплошные и переходят с червя на полушария, поэтому каждая долька червя связана с правой и левой дольками полушарий. Парный клочок является наиболее изолированной и филогенетически старой долькой полушария. Клочок с каждой стороны прилежит к вентральной поверхности средней мозжечковой ножки и связан с узелком червя ножкой клочка, переходящей в нижний мозговой парус. Мозжечок состоит из серого и белого вещества. Белое вещество, проникая между серым, как бы ветвится, образуя белые полоски.

Нейроны в коре мозжечка располагаются в три слоя: наружный – молекулярный, средний – слой грушевидных нейронов (ганглионарный) и внутренний – зернистый. В молекулярном и зернистом слоях залегают, в основном, мелкие нейроны. Крупные грушевидные нейроны (клетки Пуркинье) располагаются в среднем слое в один ряд. Это эфферентные нейроны коры мозжечка. Дендриты клеток Пуркинье располагаются в поверхностном молекулярным слое, а аксоны направляются к нейронам ядер мозжечка и таламуса. Остальные нейроны коры мозжечка являются вставочными (ассоциативными), они передают импульсы грушевидным нейронам. Афферентные и эфферентные волокна, связывающие мозжечок с другими отделами мозга, образуют три пары мозжечковых ножек. Нижние ножки соединяют мозжечок с продолговатым мозгом, средние – с мостом, верхние – со структурами среднего, промежуточного и конечного мозга.

Функции мозжечка Мозжечок выполняет функции координации быстрых целенаправленных произвольных движений, регуляции позы и мышечного тонуса, поддержания равновесия тела. мозжечок участвует в регуляции целенаправленных движений, делая их плавными и точными. При повреждении мозжечка и выпадении его функций нарушается соразмерное распределение тонуса мышц – сгибателей и разгибателей, движения становятся несоразмерными, резкими, размашистыми, нарушается анализ сигналов от проприорецепторов мышц и сухожилий, страдают вегетативные функции органов сердечно-сосудистой системы, пищеварительных и других органов.

Пластичность функции мозжечка ответственна также за двигательное научение и выработку стереотипных движений, таких как письмо, печатание на клавиатуре. Вывод: Мозжечок выполняет три важнейших функции: 1 - координация движений, 2 - распределение мышечного тонуса и контроль равновесия, 3 - регуляция вегетативных процессов.

53. Функции ретикулярной формации ствола мозга Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах: 1. в регуляции уровня сознания путем воздействия на активность корковых нейронов , например, участие в цикле сон /бодрствование , 2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам , идущим попереднебоковому канатику , путем проведения афферентной информации к лимбической системе , 3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах ( циркуляторных рефлексахи дыхательных рефлексах , рефлекторных актах глотания , кашля , чихания ), при которых должны взаимно координироваться разные афферентные и эфферентные системы, 4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга . Она оказывает генерализованное возбуждающее или тормозящее влияние на многие структуры мозга. Следовательно, она может регулировать уровень функциональной активности моторной, сенсорной, висцеральных систем и организма в целом. РФ участвует в организации оборонительного, полового, пищедобывательного поведения. С другой стороны, она может избирательно активировать или тормозить определенные системы мозга. В свою очередь кора больших полушарий, через нисходящие пути, может оказывать возбуждающее действие на РФ. 

РФ контролирует передачу сенсорной информации через продолговатый, средний мозг, а также ядра таламуса. Она непосредственно участвует в регуляции бодрствования и сна, за счет синхронизирующих центров сна и бодрствования, находящихся в ней.

54 Промежуточный мозг, основные отделы. Расположен под мозолистым телом и сводом, срастается по бокам с полушариями большого мозга. Он представлен следующими отделами: 1) областью зрительных буфов (таламическая область); 2) гипоталамусом (подталамическая область); 3) III желудочком. К таламической области относятся таламус (зрительный бугор), метаталамус (медиальное и латеральное коленчатые тела) и эпиталамус (шишковидное тело, поводки, спайки поводков и эпиталамическая спайка). Таламус — парное образование овоидной формы, расположенное по сторонам III желудочка. Он состоит из серого вещества, в котором различают отдельные скопления нервных клеток — ядра таламуса, разделенные тонкими прослойками белого вещества. В настоящее время выделяют до 120 ядер, выполняющих различные функции. В связи с тем что здесь происходит переключение большей части чувствительных проводящих путей, таламус фактически является подкорковым чувствительным центром, а его подушка — подкорковым зрительным центром. ядра таламуса можно разделить на 2 гр: спец. и неспец.  спец ядра таламуса: ядро-латеральное коленчатое тело теламуса- ядро зрит. анализатора. Афферент. импульсы идут от зрит. рец. Эфферентные пути пойдут в затылочную зону коры. ядро-медиальное коленчатое тело таламуса.- ядро слухового анализатора. Афферент. импульсы от слух. рец( от улитки). Эфферентные пути пойдут в височную долю коры. ядро-зедневентральное ядро таламуса. К нему приходят импульсы по спинно-таламическому нерву. К спец. ядрам таламуса относятся ассоциативные ядра таламуса. Импульс от ассоциат. ядер пойдет в ассоциатив. зоны коры.

Неспец ядра таламуса: К ним приходят импульсы от всех рец, которые прошли РФ. От неспец. ядер таламуса н.им. пойдет ко всем областям коры. Нес ядр. таламуса вместе с РФ ствола мозга. Таламус имеет большое знач. в возникновении ощущений.

Гипоталамус формирует нижние отделы промежуточного мозга, участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, сосцевидные тела, серый бугор с воронкой и гипофизом. Гипоталамус с гипофизом образует единый функциональный комплекс, в котором первый играет регулирующую роль, а второй — эффекторную.  В гипоталамусе различают три основные гипоталамические области скопления нервных клеток: переднюю, заднюю и промежуточную. Скопления нервных клеток в этих областях образуют более 30 ядер гипоталамус

таламуса Ядра обильно снабжены кров. сосудами,.  Раздражение перед. ядер гипотал. вызывает сужение зрачка, замедл. сер. деятельность, понижает артериальное. давление, т.е. реакции парасим. вегет. н.с. А разражение задних ядер гип. расширяют зрачки, увеличивают сер. деят.- реакции симпат. вегет. н.с. Гипоталамус-высший центр регуляции вегетативных фун-ций. В гипот. находятся осморец. Это клетки гипот. регулирующ. на изменение давления. Обл. реагирующие на обмен веществ, ожирение, истощение. К наружению полов. поведения. Участвуеь в обмене веществ. Гипот- высший регулятор всех вегет. ф-ций. Центр. структура лимбической системы, участвующая в мотивоэмоцион. поведения. Участвует в ругуляции эндокринн. ф-ций.

Сам гипофиз состоит их перед, пром, зад. областию Гипофиз-важная железа внутр. секреции. Он вырабатывает гормоны. Перед. доля вырабатывает гормоны, которые влияют на работу других желез. внутр. секреции 1) тиреотропный(влияет на работу щит. железы), 2) гонадотропный влияет на раб полов. желез., 3) адренокортикотропный- на раб. надпочечников 4)соматотропный-влияет на рост. Задн. доля гипофиза выделяет гормоны влияющие:  антидеур. гормно- на проницаемость канальцев нефрона. вазопрессин- расширение и сужение стенок сосудов окситоцил- на мускулатуру матки

Пер. и зад. доли самостоятельны. В гипот. имеются клетки, чувствительные к уровню гормонов в крови. 

Лимбическая система:  ф-ция-является базисом мотивоционно-эмоционального поведения. Она состоит из структур, нах. в промеж. мозге: 3 группы структур: филогенетически более старые структуры. Гипокамп и обон. луковица, обон. тракт. лимбическая кора распол. на медиальной поверхности полушария( где полуш. соединяются). гипоталамус, миндалина, ядра таламуса. центр. образованием лимбич. системы явл. гипоталамус. Лимбич. система принимает участие в системах памяти и обучения. Так же участвует в постоянстве внутр. среды( гомеостаз), в регуляции цикла сон-бодроствование. В регуляуии пищев, половог отношения, температуры тела, водного баланса.

Билет 50 Восходящие пути,афферентные,чувствительные.по ним к коре большого мозга поступают нервные импульсы.восходящиепути деяться на 3 группы:экстероцептивные,проприоцептивные,интероцептивные. 1)экстра- несут импульсы от кожного покрова,от органов чувств, 2)проприо- проводят импульсы от мышц,сухожилий,суставных капсул.связок 3)интеро- проводят импульсы от внутренних органов и сосудов. Нисходящие пути проводят импульсы от коры полушарий большого мозга и подкорковых центров к ядрам мозгового ствола и двигательным ядрам передних рогов спинного мозга.эти пути разделяются на 2 группы:пирамидные и экстрапирамидные. 1)пирамидный путь,представляет собой систему нервных волокон,по которым произвольные двигательные импульсы направляются к двигат.ядрам черепных нервов и к передних рогам спинного мозга,а от них к скелетным мышцам.в зависимости от направления и расположения волокон пирамидный путь делится на 3 части:корково-ядерный путь,латеральный и передний корково-спинно-мозговые пути. 2)экстрапирамидные пути являются филогенетически более старыми,чем пирамидные.они имеют мно-во связей с клетками и ядрами ствола мозга с корой большого мызгав связи с этим началом этих путей можно считать кору полушарий бол.мозга.,а местом где они оканчиваются, -ядра мозгового ствола и передних рогов спинного мозга

Билет 51 Восходящие специфические пути покрышки ствола мозга: - спино-таламический боковой путь; - путь глубокой чувствительности Голля и Бурдаха (медиальная петля); - дорзальный спино-мозжечковый путь Флексига; - вентральный спино-мозжечковый путь Говерса; - спино-таламический путь прямой; - латеральная петля. Нисходящие специфические пути покрышки ствола мозга: - прямой пирамидный путь; - латеральный пирамидный путь; - кортико-бульбарный путь; - рубро-спинальный путь; - вестибуло-спинальный путь; - покрышечно-спинальный путь; - задний продольный пучок; - оливо-спинальный путь; - коллатеральные волокна от заднего продольного пучка к ядрам Голля и Бурдаха; - путь от нейронов центрального серого вещества к мозжечку; - петля тройничного нерва; - эфферентные пути от бледного шара к красным ядрам, черной субстанции, ядрам заднего продольного пучка; - эфферентные пути из полосатого тела к черной субстанции. Восходящие неспецифические пути покрышки ствола мозга: - путь от медиальных отделов варолиева моста и продолговатого мозга к талямусу, гипоталямусу. - мозжечково-ретикулярные пути (от ядер ретикулярной формации к полушариям и червю мозжечка); - коллатеральные волокна от спинно-талямического пути и пути глубокой чувствительности к ядрам ретикулярной формации; - коллатеральные волокна от ядра тройничного нерва. Неспецифические пути покрышки мозга: - передней ретикуло-спинальный пучок (вентральный пучок) от ядер моста; - боковой ретикуло-спинальный пучок (латеральный пучок) от ядер продолговатого мозга; - мозжечково-ретикулярные пути; - путь от гипоталямуса к ядрам ретикулярной формации; - путь от мамиллярных тел к ретикулярной формации; - прямой текто-ретикулярный путь; - ретикуло-вестибулярные пути.

Билет 52 Мозжечок играет важную роль в поддержании равновесия тела и координации движений.у мозжечка различают два полушария и непарную срединную филогенетически старую часть-червь.поверхности полушарий и червя разделяют поперечные и параллельные борозды,между которыми расположены узкие длинные листки мозжечка.у мозжечка различают переднюю,заднюю и клочково-узелковую доли.мозжечок состоит из серого и белого вещества.кора мозжечка,располож. Снаружи от белого вещества,состоит из серого вещества.в толще белого ве-ва имеются скопления серого ве-ва-парные ядра.самое крупное-зубчатое тело,медиальные лежит пробковидное,еще медиальнее шаровидное и ядра шатра. Фу-ции:1)регуляция мышечного тонуса и положения тела в пространстве 2)координация целенаправленных движений 3)координация быстрых целенаправленных движений

Билет 53  Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга . Ретикулярная формация получает информацию от всех органов чувств , внутренних и других органов , оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы. Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

1. в регуляции уровня сознания путем воздействия на активность корковых нейронов , например, участие в цикле сон / бодрствование , 2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам , идущим по переднебоковому канатику , путем проведения афферентной информации к лимбической системе , 3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах ( циркуляторных рефлексах и дыхательных рефлексах , рефлекторных актах глотания , кашля , чихания ), при которых должны взаимно координироваться разные афферентные и эфферентные системы, 4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга .

Билет 54 Промежу́точный мозг — отдел головного мозга. Промежуточный мозг расположен выше среднего мозга, под мозолистым телом. Промежуточный мозг подразделяется на: 1)Таламический мозг  2)Подталамическую область или гипоталамус  3)Третий желудочек, который является полостью промежуточного мозга Таламус Таламус или зрительный бугор — парное образование яйцевидной формы — состоит в основном из серого вещества. Медиальная и верхняя поверхности свободны, а латерально-нижней поверхностью он сообщается с другими отделами мозга. Таламус является подкорковым центром всех видов чувствительности (болевой, температурной, тактильной, проприоцептивной). Таламус является местом переключения всех чувствительных проводящих путей, идущих от экстеро-, проприо- и интерорецепторов. Эпиталамус или надталамическую область располагается в верхнезадней части таламуса. Эпиталамус образует шишковидное тело (эпифиз), которое посредством поводков крепится к таламусу. Шишковидное тело представляет собой железу внутренней секреции, которая отвечает за синхронизацию биоритмов организма с ритмами окружающей среды. Метаталамус или заталамическую область образован парными медиальным и латеральным коленчатыми телами, лежащими позади таламуса. Медиальное коленчатое тело находится позади подушки таламуса. Оно является подкорковым центром слуха. Латеральное коленчатое тело расположено книзу от подушки. Оно является подкорковым центром зрения. Гипоталамус Гипоталамус или подталамическую область расположен под таламусом. Гипоталамус включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест, II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы. Гипоталамус подразделяется на четыре части: Передняя гипоталамическая часть Промежуточная гипоталамическая часть Задняя гипоталамическая часть Дорсолатеральная гипоталамическая часть

Билет 55 Гипоталамус или подбугорье — отдел промежуточного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название. Гипоталамус располагается спереди от ножек мозга и включает в себя ряд структур: расположенную спереди зрительную и обонятельную части. К последней относится собственно подбугорье, или гипоталамус, в котором расположены центры вегетативной части нервной системы. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты и медиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный. Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй — эффекторную роль. В гипоталамусе залегают также нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т.д.). Гипоталамус связан с корой большого мозга и лимбической системой. В гипоталамус поступает информация из центров, регулирующих деятельность дыхательной и сердечно-сосудистой систем. В гипоталамусе расположены центры жажды, голода, центры, регулирующие эмоции и поведение человека, сон и бодрствование, температуру тела и т.д. Центры коры большого мозга корректируют реакции гипоталамуса, которые возникают в ответ на изменение внутренней среды организма. В последние годы из гипоталамуса выделены обладающие морфиноподобным действием энкефалины и эндорфины. Считают, что они влияют на поведение (оборонительные, пищевые, половые реакции) и вегетативные процессы, обеспечивающие выживание человека. Таким образом, гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений.

Билет 56 Лимбическая система — совокупность ряда структур головного мозга. Участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, эмоций, памяти, сна, бодрствования и др. Термин лимбическая система впервые введён в научный оборот в 1952 году американским исследователем Паулем Мак-Лином. Включает в себя: обонятельную луковицу обонятельный тракт  обонятельный треугольник переднее продырявленное вещество  поясная извилина ): автономные функции регуляции частоты сердцебиений и кровяного давления; парагиппокампальная извилина  зубчатая извилина  гиппокамп : требуемый для формирования долговременной памяти миндалевидное тело :агрессия и осторожность, страх гипоталамус ): регулирует автономную нервную систему через гормоны, регулирует кровяное давление и сердцебиение, голод, жажду, половое влечение, цикл сна и пробуждения сосцевидное тело: важен для формирования памяти ретикулярную формацию среднего мозга Функции лимбической системы Получая информацию о внешней и внутренней средах организма, лимбическая система запускает вегетативные и соматические реакции, обеспечивающие адекватное приспособление организма к внешней среде и сохранение гомеостаза.  Частные функции лимбической системы: регуляция функции внутренних органов (через гипоталамус); формирование мотиваций, эмоций, поведенческих реакций; играет важную роль в обучении; обонятельная функция.

Билет 57 Конечный мозг (лат ) — самый передний отдел головного мозга. Состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга.Является наиболее крупным отделом головного мозга. Это также самая развитая структура, покрывающая собой все отделы головного мозга. Большой мозг состоит из двух полушарий, каждое из которых представлено плащом, обонятельным мозгом и базальными ядрами. Полостью конечного мозга являются боковые желудочки, находящиеся в каждом из полушарий. Полушария большого мозга отделены друг от друга продольной щелью большого мозга и соединяются при помощи мозолистого тела, передней и задней спаек и спайки свода. Мозолистое тело состоит из поперечных волокон которые в латеральном направлении продолжаются в полушария, образуя лучистость мозолистого тела, соединяя друг с другом участки лобных и затылочных долей полушарий, дугообразно изгибаются и образуют передние — лобные и задние — затылочные щипцы. К задней и средней частям мозолистого тела снизу прилежит свод мозга, состоящий из двух дугообразно изогнутых тяжей, сращенных в средней своей части при помощи передней спайки мозга.

Билет 58 Вегетативная (автономная) нервная система — регулирует деятельность внутренних органов, обеспечивает важнейшие функции питания, дыхания, выделения, размножения, циркуляции крови и лимфы. Ее реакции не подчинены напрямую нашему сознанию компоненты вегетативной нервной системы пронизывают практически все ткани организма, вместе с гормонами желез внутренней секреции (эндокринных желез) она координирует работу органов, подчиняя ее общей цели — созданию оптимальных условий существования организма в данной ситуации и в данный момент времени. Нервные клетки вегетативной нервной системы находятся не только в головном и спинном мозге, они широко рассеяны во многих органах, особенно в желудочно-кишечном тракте. Они в виде многочисленных узлов (ганглиев) располагаются между органами и мозгом. Вегетативные нейроны образуют друг с другом связи, позволяющие им работать автономно, образуется масса мелких нервных центров вне пределов центральной нервной системы, которые могут взять на себя некоторые относительно простые функции (например, организацию волнообразных сокращений кишечника). При этом центральная нервная система продолжает осуществлять общий контроль за ходом этих процессов и вмешиваться в них. В вегетативной нервной системе выделяют симпатическую и парасимпатическую части. При преобладающем влиянии одной из них орган снижает или, наоборот, усиливает свою работу. Обе они находятся под контролем высших отделов центральной нервной системы, чем достигается их согласованное действие. Вегетативные центры в головном и спинном мозге составляют центральный отдел вегетативной нервной системы, а ее периферический отдел представлен нервами, узлами, вегетативными нервными сплетениями. Симпатические центры расположены в боковых рогах серого вещества спинного мозга, в его грудных и поясничных сегментах. От их клеток отходят симпатические волокна, которые в составе передних корешков, спинномозговых нервов и их веточек направляются к узлам симпатического ствола. Правый и левый симпатические стволы расположены вдоль всего позвоночного столба. Они представляют собой цепочку утолщений (узлов), в которых находятся тела симпатических нервных клеток. К ним и подходят нервные волокна от центров спинного мозга. Отростки же клеток узлов идут к внутренним органам в составе вегетативных нервов и сплетений. Симпатические стволы имеют шейный, грудной, поясничный и тазовый отделы. Шейный отдел состоит из трех узлов, ветви которых образуют сплетения на сосудах головы, шеи, груди, около органов и в их стенках, в том числе, сердечные сплетения. Грудной отдел включает 10-12 узлов, их веточки образуют сплетения на аорте, бронхах, в пищеводе. Проходя через диафрагму, они входят в состав солнечного сплетения. Поясничный отдел симпатического ствола образуют 3-5 узлов. Их ветви через солнечное и другие вегетативные сплетения брюшной полости достигают желудка, печени, кишечника, почек, поджелудочной железы, половых желез. Тазовый отдел включает 4 узла, через которые и осуществляется симпатический контроль над органами малого таза (мочевым пузырем, прямой кишкой). Парасимпатические центры расположены в стволе головного мозга и в крестцовых сегментах спинного мозга. Отростки их нейронов идут, как правила, непосредственно до органов, а уже в их стенках находятся тела последних в этой цепочке нервных клеток с очень короткими отростками. Парасимпатические центры мозгового ствола через черепные нервы контролируют органы головы, шеи, а посредством блуждающего нерва — и органов грудной и брюшной полостей. Волокна от крестцовых центров идут по тазовым вегетативным сплетениям к органам таза и брюшной полости.

Билет 59 Железы внутренней секреции К железам внутренней секреции относятся железы, не имеющие специализированных выводящих протоков и выделяющие свои секреты непосредственно в кровь. Секретом желез внутренней секреции являются физиологически активные вещества — гормоны. За счет гормонов осуществляется гуморальная регуляция физиологического состояния организма. Но среди эндокринных желез есть железы, которые выполняют двойную функцию — являются железами внутренней секреции и внешней секреции, так как имеют специализированные выводные протоки. К смешанным железам относятся поджелудочная железа (синтезирует пищевые ферменты, которые в составе панкреатического сока поступают в двенадцатиперстную кишку) и половые железы.

Билет 60 Гипоталамо-гипофизарная система — объединение структур гипофиза и гипоталамуса, выполняющее функции как нервной системы, так и эндокринной. Этот нейроэндокринный комплекс является примером того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции. Гормоны гипоталамо-гипофизарной системы Под влиянием того или иного типа воздействия гипоталамуса, доли гипофиза выделяют различные гормоны, управляющие работой почти всей эндокринной системы человека. Исключение составляет поджелудочная железа и мозговая часть надпочечников. У них есть своя собственная система регуляции. Гормоны передней доли гипофиза Соматотропин-Обладает анаболическим воздействием, следовательно, как любой анаболик, СТ усиливает процессы синтеза (в особенности — белкового). Поэтому соматотропин называют часто «гормоном роста». При нарушении секреции соматотропина возникает три типа патологий. При снижении концентрации соматотропина человек развивается нормально, однако его рост не превышает 120 см - «гипофизарный нанизм». Такие люди (гормональные карлики) способны к деторождению и их гормональный фон не сильно нарушен. При повышении концентрации соматотропина человек так же развивается нормально, однако его рост превышает 195 см. Такая патология называется «гигантизм» В период пубертата (период активирования половой системы, начинающийся примерно в 11-13 лет. У юношей пубертат наступает на два года позже чем у девушек, чей гормональный скачок в отличие от юношей плавный и спад его довольно быстрый.) сильно увеличивается мышечная масса, следовательно увеличивается число капилляров. Сердце же не способно к такому быстрому росту. Из-за такого несоответствия возникают патологии. Например вегето-сосудистая дистония (ВСД), часто встречающаяся у подростков. После 20 лет выработка соматотропина снижается, следовательно и формирование хрящевой ткани (как один из аспектов роста) замедляется и уменьшается. Поэтому костная ткань потихоньку «съедает» хрящевую ткань, следовательно кости некуда расти, кроме как в диаметре. Если выработка соматотропина не прекращается после 20, то кости начинают расти в диаметре. За счёт такого утолщения кости утолщаются например пальцы, и из-за этого утолщения они почти теряют подвижность. При этом соматотропин так же стимулирует выработку соединительной ткани, вследствие чего увеличиваются губы, нос, ушные раковины, язык и т. д. Эта патология называется «акромегалия». Тиреотропин-Мишенью тиреотропина является щитовидная железа. Он регулирует рост щитовидной железы и выработку её основного гормона — тироксина. Пример действия релизинг-фактора: Тироксин необходим для повышения эффективности кислородного дыхания, для тироксина нужен тиреотропин, а для тиреотропина нужен тиреолиберин, который является релизинг-фактором тиреотропина. Гонадотропины-Название гонадотропины (ГТ) обозначает два разным гормона — фолликулостимулирующий гормон и лютеинизирующий гормон. Они регулируют деятельность половых желез — гонад. Как и другие тропные гормоны, гонадотропины в первую очередь влияют на эндокринные клетки гонад, регулируя выработку половых гормонов. Кроме того, они оказывают влияние на созревание гамет, менструальный цикл и связанные с ним физиологические процессы. Кортикотропные гормоны-Мишень КТ — кора надпочечников.Следует отметить, что паращитовидная железа регулирует минеральный обмен (с помощью парат-гормона), как и кора надпочечников, так что можно поставить регуляцию только на кору надпочечников, а паращитовидная железа автоматически будет работать в соответствии с корой надпочечников.

Билет 61 ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР система рецепторов, нервных центров мозга и соединяющих их путей, функция которой заключается в восприятии зрительных раздражений, их трансформации в нервные импульсы и передаче последних в корковые центры мозга, где формируется зрительное ощущение, в анализе и синтезе зрительных раздражений. В систему 3. а. включаются также пути и центры, обеспечивающие движения глаз и рефлекторные реакции зрачка на световое раздражение. 3. а. позволяет осуществлять прием и анализ информации в световом диапазоне — 760 нм), он является физиологической основой формирования зрительного образа. Возможности 3. а. определяются его энергетическими, пространственными, временными и информационными характеристиками. Энергетические характеристики определяются мощностью (интенсивностью) световых сигналов, воспринимаемых глазом. К ним относятся диапазон воспринимаемых яркостей, контраст и цветоощущение. Пространственные характеристики 3. а. определяются воспринимаемыми глазом размерами предметов и их месторасположением в пространстве. В их число входят: острота зрения, поле зрения, объем зрительного восприятия. Временные характеристики определяются временем, необходимым для возникновения зрительного ощущения при тех или иных условиях работы оператора. К ним относятся латентный (скрытый) период зрительной реакции, длительность инерции ощущения, критическая частота слияния мельканий, время адаптации, длительность информационного поиска. Основной информационной характеристикой 3. а. является пропускная способность, т. е. то максимальное количество информации, которое 3. а. способен принять в единицу времени. Учет этих характеристик необходим при проектировании как отдельных индикаторов, так и систем отображения информации. Исходя из характеристик 3. а., определяются яркость и контраст изображения, размеры знаков и их отдельных деталей, месторасположение их в поле зрения оператора, временные параметры предъявляемой информации, темп поступления сигналов оператору и т. д. Организуя работу оператора, следует осмотрительно относиться к резервным возможностям 3. а. С этой целью необходимо решать вопрос о необходимости разгрузки 3. а. Этот вопрос может решаться за счет использования возможностей взаимодействия анализаторов, соБилет 62 Слуховой анализатор — совокупность соматических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний. С. а. состоит из наружного, среднего и внутреннего уха, слухового нерва, подкорковых релейных центров и корковых отделов. Ухо является усилителем и преобразователем звуковых колебаний. Через барабанную перепонку, представляющую собой эластичную мембрану, и систему передаточных косточек — молоточек, наковальню и стремечко — звуковая волна доходит до внутреннего уха, вызывает колебательные движения в заполняющей его жидкости. Внутреннее ухо, или улитка, представляет собой спиралеобразный ход, состоящий из двух с половиной витков. Заполняющая улитку жидкость — пери- и эндолимфа — практически несжимаема; поэтому при смещении стремечка вправо мембрана круглого окна прогибается влево, а возникающие колебания эндолимфы передаются волокнам расположенной вдоль улитки базилярной, или основной, мембраны и возбуждают специализированные механорецепторы — волосковые клетки. Волосковые клетки улитки являются основными аппаратами слуховой рецепции. Реагируя на колебания эндолимфы, они превращают улавливаемые звуковые колебания в нервные импульсы, передающие акустическую информацию по волокнам слухового нерва. Возбуждение, возникающее в волокнах слухового нерва, направляется к центральным отделам нервной системы. Первым центром обработки акустической информации являются расположенные на уровне варолиева моста ядра слухового нерва, после чего она поступает к т.н. верхним оливам. Здесь происходит объединение сигналов, поступающих от левой и правой улитки. Затем афферентные пути слухового нерва направляются к нижним буграм четверохолмия, которые представляют собой элементарный рефлекторный центр слуховой системы. Именно здесь осуществляется передача слуховых импульсов на двигательные пути, в результате чего возникают такие, напр., реакции, как двигательное настораживание или сокращение зрачка в ответ на внезапно возникающий звук. Далее мощный пучок нервных волокон идет к внутренним коленчатым телам, от которых начинается последняя часть слухового нерва. Его волокна направляются к поперечной извилине височной области коры, или извилине Гешля, представляющей собой корковый конец С. а. По своему строению извилина Гешля (поля 41-е и 42-е, по Бродману) очень близка к проекционной зрительной коре. Основное место в ней занимает 4-й афферентный слой, в котором и заканчиваются волокна слухового нерва. Как в зрительной проекционной области, так и в извилине Гешля были обнаружены признаки соматотопического строения. При этом волокна, передающие информацию о высоких тонах, заканчиваются в медиальных, а волокна, несущие информацию о низких тонах, — в латеральных участках этой извилины. Существенным отличием корковых отделов слухового анализатора от зрительного является то, что здесь нет изолированного представительства каждого уха или его части в противоположном полушарии коры головного мозга. Моноуральные волокна направляются к обоим полушариям, и поэтому повреждение одной (напр., правой) извилины Гешля приводит лишь к незначительному снижению слуха, в несколько большей степени проявляющемуся в противоположном (левом) ухе. Над первичными отделами слуховой коры, расположенными в извилине Гешля, надстроены вторичные отделы слуховой коры. Они находятся на наружной поверхности височной области, в пределах верхней височной извилины (поле 22-е, по Бродману). В их составе преобладают клетки верхних, ассоциативных слоев коры. В отличие от первичной слуховой коры ее вторичные отделы не имеют соматотопического строения и представляют собой сложный интегрирующий аппарат, который обеспечивает сложные формы анализа и синтеза звуковой информации, делая возможным восприятие сложномузыкальных и речевых звуков, поэтому поражение вторичных отделов слуховой коры не приводит к снижению остроты слуха и выпадению восприятия простых звуков, вызывает нарушение различения мелодий в одних случаях или сложно построенных звуков речи в других.

здания полисенсорных систем отображения информации.

Билет 63 Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение боли, что вызывает защитную реакцию организма. Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью осязания мы определяем не только, гладкая или шероховатая поверхность у предметов, но и их величину, а иногда и форму. Не менее важно осязание и для двигательной деятельности. В движении человек соприкасается с опорой, предметами, воздухом. Кожа в одних местах растягивается, в других — сжимается. Все это раздражает осязательные рецепторы. Сигналы от них, поступающие в чувствительно-двигательную зону, коры полушарий, помогают ощутить движение всего тела и его частей. Температурные рецепторы представлены холодовымиитепловыми точками. Они, как и другие рецепторы кожи, распределены неравномерно.  Наиболее чувствительна к воздействию температурных раздражителей кожа лица и живота. Кожа ног по сравнению с кожей лица в два раза менее чувствительна к холоду и в четыре — к теплу. Температурные раздражители помогают ощущать структуру комбинации движений и скорость. Происходит это потому, что при быстром изменении положения частей тела или большой скорости передвижения возникает прохладный ветерок. Он воспринимается температурными рецепторами как изменение температуры кожи, а осязательными — как прикосновение воздуха.

Билет 64 Обонятельный анализатор — нейрофизиологическая система, осуществляющая анализ пахучих веществ, которые воздействуют на слизистую оболочку носовой полости. О. а. состоит из периферического отдела (обонятельные рецепторы), специфических проводящих нервных путей (обонятельный нерв и центральный обонятельный путь), подкорковых нервных структур (сосковидные тела) и коркового отдела (извилина морского коня). Периферическим отделом О. а. служат рецепторные поверхности, расположенные в слизистой оболочке верхней части носовой перегородки. Обонятельный рецептор состоит из т. н. биполярного нейрона размером 5 — 10 мк и периферической части — палочкообразного отростка (шириной около 1 мк и длиной 20 — 90 мк), заканчивающегося обонятельным пузырьком, на котором симметрично расположены 9 — 16 ресничек (диаметром 0,1 — 0,2 мк), непосредственно вступающих в контакт с пахучими веществами. Аксоны биполярных нейронов, собираясь в пучок обонятельного нерва, проникают через отверстия в продырявленной пластинке решетчатой кости в полость черепа и входят в обонятельную луковицу. Из митральных клеток обонятельной луковицы начинается центральный обонятельный путь, который заканчивается в височных базальных отделах мозга в области извилины морского коня. Подкорковыми нервными структурами являются т.н. сосковидные тела. Пахучие вещества проникают в слизистую оболочку носа при вдыхании через нос или рот. Минимальная концентрация пахучего вещества, вызывающего обонятельное ощущение, называется абсолютным порогом чувствительности. О. а. человека имеет высокую чувствительность. Некоторые пахучие вещества (ванилин, валерьяновая кислота) вызывают чисто обонятельные ощущения. Другие пахучие вещества вызывают наряду с обонятельными также и температурные, тактильные, болевые и вкусовые ощущения (напр., хлороформ — сладкий вкус, ментол и камфора — холод и др.). Важным свойством О. а. является адаптация (уменьшение чувствительности) к длительному раздражению пахучим веществом. Одновременное действие нескольких пахучих веществ приводит к их смешению. В некоторых случаях происходит подавление одного запаха другим. Возможны нейтрализация запахов, когда смесь не вызывает обонятельного ощущения; появление нового запаха; последовательная смена запахов; увеличение чувствительности к одному запаху после действия другого и др. явления, возникающие при смешении запахов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]