Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы ЕТПЕ.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.22 Mб
Скачать
  1. Закон Ома для пассивной и активной участка цепи

Закон Ома. Закон Ома применительно к пассивной ветви имеет вид ,

а для активной ветви : .

Если на схеме (рис.2.1б) ЭДС направить навстречу току, то . Обобщенный закон Ома для участка цепи ав : ,

а) б)

Рисунок 2.1 — Пассивная (а) и активная (б) ветви электрической цепи

где суммы падений напряжения и ЭДС в ветви — алгебраические (знак слагаемого определяется с учетом направления тока), а сумма сопротивлений — арифметическая (без учета знака). Падение напряжения и ЭДС входят в сумму со знаком «+» при совпадении с выбранным направлением тока, со знаком «-» при противоположных направлениях.

Для примера запишем обобщенный закон Ома для активной ветви, изображенной на рис.2.2.

На участке ав происходит падение напряжения . Далее потенциал скачком увеличивается на величину , снова понижается на , а затем на (ЭДС направлена против тока).

Определим потенциал в конечной точке е : .

Получим или окончательно .

Рисунок 2.2 — Активная ветвь и изменение потенциала в ней

4.Эквивалентные преобразования электрических цепей. Определение эквивалентного сопротивления.

Последовательное соединение - это совокупность связанных элементов электрической цепи, не имеющая узлов.Отсюда следует, что по всем элементам последовательного соединения протекает одинаковый ток, т.к. изменение тока может происходить только в узлах электрической цепи.

В последовательное соединение в общем случае может входить любое количество резисторов и источников ЭДС (рис. 1), но не может входить более одного источника тока, т.к. это противоречило бы свойству каждого из источников создавать в цепи ток не зависящий от внешних элементов.

Таким образом, любое последовательное соединение можно преобразовать к последовательному соединению одного эквивалентного резистора и одного источника ЭДС. Причем, сопротивление эквивалентного резистора равно сумме всех сопротивлений входящих в соединение, а ЭДС эквивалентного источника равна алгебраической сумме ЭДС источников входящих в соединение.

Последовательное соединение элементов обладает свойством коммутативности, т.е. любые элементы этого соединения могут произвольно переставляться в пределах соединения. Это свойство непосредственно следует из коммутативности слагаемых выражений (1).

Так как эквивалентное сопротивление R представляет собой сумму положительных слагаемых, то rmax, где rmax - наибольшее из сопротивлений, входящих в соединение.

Если последовательное соединение подключено к узлам электрической цепи, то его определение тождественно определению ветви, следовательно, ветвь может быть образована только последовательным соединением.

В отличие от последовательного соединения, в параллельном следует различать параллельное соединение элементов цепи и параллельное соединение ветвей.

Параллельное соединение элементов - это совокупность элементов электрической цепи, объединенных двумя узлами и не и меющих связей с другими узлами.

В параллельное соединение элементов в общем случае могут входить резисторы и источники тока (рис. 2), но не может входить более одного источника ЭДС, т.к. это противоречило бы их свойству создавать на выходе разность потенциалов не зависящую от внешней цепи.

Все элементы в параллельном соединении подключены к двум узлам и падение напряжения между этими узлами одинаково для всех элементов.

Таким образом, параллельное соединение любого количества элементов можно преобразовать к параллельному соединению одного эквивалентного резистора и одного источника тока. Причем, сопротивление эквивалентного резистора равно величине обратной сумме всех проводимостей резисторов входящих в соединение, а ток эквивалентного источника равен алгебраической сумме токов источников входящих в соединение.

Аналогично последовательному соединению, параллельное обладает свойством коммутативности, вытекающим из свойства коммутативности сумм выражений (2).

При параллельном соединении для эквивалентной проводимости G, являющейся суммой проводимостей отдельных элементов, справедливо отношение G >gmax, где gmax - наибольшая из проводимостей элементов, образующих соединение. Отсюда G=1/R > gmax=1/rmin Ю R < rmin, т.е. эквивалентное сопротивление резисторов, входящих в параллельное соединение меньше наименьшего из них rmin.

 

В параллельное соединение могут входить не только элементы, но и ветви, каждая из которых может быть п оследовательным соединением элементов (рис. 3 а)). В этом случае используется понятие параллельного соединения ветвей, под которым понимают совокупность ветвей электрической цепи, объединенных двумя узлами и не имеющих связей с другими узлами.

На рис. 3 а) ветви R1R2 и R3 соединены параллельно, но элементы R1R3 и R2R3 параллельного соединения не образуют, т.к. эти пары элементов не объединены двумя узлами. Очевидно, что для них не выполняется и условие равенства падений напряжения.

Схемы цепей рис. 3 относят обычно к смешанному соединению, понимая под ним совокупность последовательного и параллельного соединений элементов и ветвей цепи.