Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дрейзин В.Э., Кочура А.В. - Управление качество...doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
3.62 Mб
Скачать

9.4. Подходы к построению математических моделей динамических технологических процессов

9.4.1. Особенности экспериментального исследования

динамических объектов

Напомним, что динамическими называются объекты, текущее состояние которых, определяемое вектором выходных измеряемых величин Y(t), зависит не только от текущих значений воздействующих на него факторов, определяемых вектором измеряемых входных величин X(t), но и от их предшествующих значений. Если сами входные величины X, а соответственно, и выходные величины Y объекта, зависят от времени, то это ещё не является основанием называть этот объект динамическим. Если в таком объекте мгновенные значения выходных величин в любой момент времени зависят только от мгновенных значений входных величин в тот же момент времени, и не зависят от их предшествующих значений, то такой объект будет являться статическим, но действующие на него факторы и его текущее состояние будут описываться временными процессами, т.е. функциями времени X(t) и Y(t). И напротив, если даже все действующие на объект факторы (кроме, конечно, времени) не будут зависеть от времени, но хотя бы одна из существенных составляющих выходного вектора Y будет зависеть от времени, то данный объект будет динамическим.

Различают динамические объекты, приводимые к статическим при больших временах (т.е. объекты, характеризуемые наличием переходных процессов, по окончании которых состояние объекта определяется только текущими значениями входных величин) – они являются динамическими только для интервалов времени, меньших длительности переходных процессов, и истинно динамические объекты, для которых само время можно считать воздействующим фактором. Первые из них называют статическими для больших времён и динамическими для малых. Подход к построению математических моделей этих двух разновидностей динамических объектов различен. В первом случае, используются изучаемые в теории автоматического регулирования методы, основанные на построении и использовании передаточных функций и исследовании частотных характеристик (для линейных систем), или методы Ляпунова, Попова и методы, базирующиеся на построении фазового портрета (для нелинейных систем). Такие объекты и соответствующие методы являются предметом изучения теории автоматического управления и им посвящена обширная литература, поэтому в данном пособии они рассматриваться не будут.

Могут быть и объекты, являющиеся статическими для сравнительно небольшого времени наблюдения, но при его существенном увеличении параметры его математической модели изменяются. Такие объекты называют статическими для малых времен или объектами с временным дрейфом параметров.

И, наконец, существует весьма важный класс динамических объектов, условно приводимых к статическим – это объекты с временным запаздыванием. К таким объектам можно отнести многооперационные технологические процессы, проводимые на технологических агрегатах, объединяемых в единую поточную технологическую линию. Поскольку выполнение каждой технологической операции требует определённого времени, а все они выполняются последовательно, то даже для каждой технологической операции объект нельзя считать чисто статическим. Действительно, даже если считать, что каждая технологическая операция, проводимая на определённом рабочем месте, осуществляется при неизменных значениях технологических параметров (что часто имеет место при дискретно-периодическом характере производства), от момента загрузки полуфабриката на вход данной операции до момента её окончания (когда уже можно определить параметры, характеризующие выходной продукт для данной операции) должно пройти определённое время, а значит, выходные параметры должны измеряться с определённым временным запаздыванием относительно входных (которыми являются параметры, определяющие качество очередного полуфабриката, и параметры, характеризующие технологические режимы данной технологической операции. Когда же мы соединяем эти операции в единую технологическую линию, то соответствующие временные запаздывания должны суммироваться, т.е. для каждого рабочего места, на котором выполняется определенная технологическая операция, должно быть определено своё значение временного запаздывания (временной лаг), определяемое местом данной технологической операции в общем технологическом процессе. Кроме того, в такой цепочке выходные параметры каждой предыдущей технологической операции являются входными для последующей, т.е. для всей технологической линии выходными являются только выходные параметры последней технологической операции, а все остальные будут являться входными, но измеряться они должны в различные моменты времени. Ещё сложнее дело обстоит с непрерывными многооперационными технологическими процессами, где входные, а значит, и выходные, величины для каждой технологической операции могут изменяться непрерывно, но временной лаг все равно существует. Тщательно рассчитав временные лаги для каждой технологической операции и учитывая их при обработке экспериментальных данных, в ряде случаев удаётся приводить такие объекты к условно статическим и применить к ним соответствующие методы построения математических моделей.