Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по матану.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
243.83 Кб
Скачать

2. Классическая вероятность. Её свойства.

При изучении случайных событий возникает необходимость количественно сравнивать возможность их появления в результате опыта. Например, при последовательном извлечении из колоды пяти карт более возможна ситуация, когда появились карты разных мастей, чем появление пяти карт одной масти; при десяти бросках монеты более возможно чередование гербов и цифр, нежели выпадение подряд десяти гербов, и т.д. Поэтому с каждым таким событием связывают по определенному правилу некоторое число, которое тем больше, чем более возможно событие. Это число называется вероятностью события и является вторым основным понятием теории вероятностей.

Отметим, что само понятие вероятности, как и понятие случайного события, является аксиоматическим и поэтому не поддается строгому определению. То, что в дальнейшем будет называться различными определениями вероятности, представляет собой способы вычисления этой величины.

Определение 1.7. Если все события, которые могут произойти в результате данного опыта,

а) попарно несовместны;

б) равновозможны;

в) образуют полную группу,

то говорят, что имеет место схема случаев.

Можно считать, что случаи представляют собой все множество исходов опыта. Пусть их число равно п ( число возможных исходов), а при т из них происходит некоторое событие А (число благоприятных исходов).

Определение 1.8. Вероятностью события А называется отношение числа исходов опыта, благоприятных этому событию, к числу возможных исходов:

классическое определение вероятности.

                             Свойства вероятности.

Из определения 1.8 вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Доказательство. Так как достоверное событие всегда происходит в результате опыта, то все исходы этого опыта являются для него благоприятными, то есть т = п, следовательно,

Р(А) = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Доказательство. Для невозможного события ни один исход опыта не является благопри-ятным, поэтому т = 0 и р(А) = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Доказательство. Случайное событие происходит при некоторых исходах опыта, но не при всех, следовательно,  0 < m < n, и из (1.1) следует, что  0 < p(A) < 1.

Пример. Из урны, содержащей 6 белых и 4 черных шара, наудачу вынут шар. Найти вероятность того, что он белый.

Решение. Будем считать элементарными событиями, или исходами опыта, извлечение из урны каждого из имеющихся в ней шаров. Очевидно, что эти события удовлетворяют всем условиям, позволяющим считать их схемой случаев. Следовательно, число возможных исходов равно 10, а число исходов, благоприятных событию А (появлению белого шара) – 6 (таково количество белых шаров в урне). Значит,

  3. Относительная частота. Статистическое определение вероятности.

Классическое определение вероятности применимо только для очень узкого класса задач, где все возможные исходы опыта можно свести к схеме случаев. В большинстве реальных задач эта схема неприменима. В таких ситуациях требуется определять вероятность собы-тия иным образом. Для этого введем вначале понятие относительной частоты W(A) события A как отношения числа опытов, в которых наблюдалось событие А, к общему количеству проведенных испытаний:

где N – общее число опытов, М – число появлений события  А.

Большое количество экспериментов показало, что если опыты проводятся в одинаковых условиях, то для большого количества испытаний относительная частота изменяется мало, колеблясь около некоторого постоянного числа. Это число можно считать вероятностью рассматриваемого события.

Определение 1.9. Статистической вероятностью события считают его относительную частоту или число, близкое к ней.

Замечание 1. Из формулы (1.2) следует, что свойства вероятности, доказанные для ее классического определения, справедливы и для статистического определения вероят-ности.

Замечание 2. Для существования статистической вероятности события А требуется:

1)      возможность производить неограниченное число испытаний;

2)      устойчивость относительных частот появления А в различных сериях достаточно большого числа опытов.

Замечание 3. Недостатком статистического определения является неоднозначность статистической вероятности.

Пример. Если в задаче задается вероятность попадания в мишень для данного стрелка (скажем, р = 0,7), то эта величина получена в результате изучения статистики большого количества серий выстрелов, в которых этот стрелок попадал в мишень около семидесяти раз из каждой сотни выстрелов.

 Основные формулы комбинаторики.

При вычислении вероятностей часто приходится использовать некоторые формулыкомбинаторики – науки, изучающей комбинации, которые можно составить по определенным правилам из элементов некоторого конечного множества. Определим основные такие комбинации.

Определение 1.10. Перестановки – это комбинации, составленные из всех п элементов данного множества и отличающиеся только порядком их расположения. Число всех возможных перестановок

                                                     Рп = п!                                                      (1.3)

Пример. Сколько различных списков (отличающихся порядком фамилий) можно составить из 7 различных фамилий?

Решение. Р7 = 7! = 2·3·4·5·6·7 = 5040.

Определение 1.11. Размещения – комбинации из т элементов множества, содержащего празличных элементов, отличающиеся либо составом элементов, либо их порядком. Число всех возможных размещений