Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_KSE_0.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
173.64 Кб
Скачать

26. Виды взаимодействий в природе.

Фундамента́льные взаимоде́йствия — качественно различающиеся типывзаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

гравитационного

электромагнитного

сильного

слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единогоэлектрослабого взаимодействия.

1) Гравитационное взаимодействие

Гравитационное взаимодействие - универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

В частности - квант гравитационного поля не выявлен

2) Электромагнитное взаимодействие

Электромагнитное взаимодействие - одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Сам фотон электрическим зарядом не обладает, а значит не может непосредственно взаимодействовать с другими фотонами.

3) Сильное взаимодействие

Сильное взаимодействие (тоже самое что - Си́льное ядерное взаимоде́йствие -цветово́е взаимоде́йствие- я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны).

Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.

4) Слабое взаимодействие

Слабое взаимодействие (слабое ядерное взаимодействие ) - одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распадядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью.

В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки

27. Учение о составе вещества. Природа химического соединения.

28. Периодическая система д. И. Менделеева.

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

В природе встречается 81 стабильный химический элемент. В состав живой материи входят 15 элементов, еще 8-10 элементов обнаружены только в определенных организмах. На схеме приведена часть Периодической системы элементов, в которой содержатся все биологически важные химические элементы, даны их физические и химические характеристики, а также содержание в живой материи и организме человека. Закономерности строения атомов, лежащие в основе периодической системы, детально рассматриваются в учебниках по химии.

Живые организмы почти на 99% состоят из четырех химических элементов: водорода (Н), кислорода (О), углерода (С) и азота (N). Водород и кислород - составные элементы воды, на которую приходится 60-70% массы клетки (см. с. 198). Наряду с углеродом и азотом эти два элемента являются также основными составляющими органических соединений, участвующих в большинстве процессов жизнедеятельности. Многие биомолекулы содержат также атомы серы (S) и фосфора (Р). Перечисленныемакроэлементы входят в состав всех живых организмов.

Химические элементы, относящиеся ко второй важной в биологическом отношении группе и в сумме составляющие примерно 0,5% массы человека, присутствуют, за немногими исключениями, в виде ионов. Эта группа включает щелочные металлынатрий (Na) и калий (К), щелочноземельные металлы магний (Мg) и кальций (Са).Галоген хлор (CI) также всегда присутствует в клетках в форме аниона. Другие жизненно важные (эссенциальные) химические элементы присутствуют в столь малых количествах, что их называют следовыми элементами. Эта группа включает переходные металлы железо (Fe), цинк (Zn), медь (Сu), кобальт (Со) и марганец (Мn). К жизненно важным микроэлементам относятся также некоторые неметаллы, такие, как иод (I) и селен (

Химические свойства элементов и типы связей, которые они могут образовывать, определяются строением электронной оболочки атомов. На схеме А приведеныэлектронные конфигурации химических элементов. Объяснение символов и сокращений дано на схеме Б. Более детально вопросы строения атомов обсуждаются в учебниках по химии.

Возможные состояния электронов определяются различными энергетическими подуровнями, которые носят название орбиталей. Орбитали характеризуются главным квантовым числом и обозначаются буквами s, p или d. Орбитали заполняются последовательно, одна за другой, по мере увеличения числа электронов. На каждой орбитали могут располагаться только два электрона, которые должны иметь противоположно направленные, антипараллельные, спины ( ↓ и ↑ соответственно). На схеме А приведено распределение электронов на орбиталях для ряда химических элементов. Например, 6 электронов углерода (1) занимают 1s-, 2s-и 2р-орбитали. Заполненная 1s-орбиталь имеет электронную конфигурацию инертного газа гелия (Не). На схемах А и Б эта область электронной оболочки углерода обозначена знаком Не; в правом столбце рядом с химическим знаком на схеме А указаны электроны, занимающие другие заполненные орбитали (2s и 2р в случае углерода). Электронная оболочка атома хлора (2) состоит из оболочки инертного газа неона (Ne) и семи дополнительных электронов, занимающих 3s- и Зр-орбитали. В атоме железа (3), переходном металле первой побочной группы, электроны занимают 4s-орбиталь, при этом 3d-орбитали остаются незаполненными. Многие реакции переходных металлов, например реакции комплексообразования с основаниями, окислительно-восстановительные реакции, проходят с участием незаполненных d-орбиталей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]