- •2. Фундаментальные принципы построения сау.
- •1) Принцип разомкнутого управления (управление по входному воздействию).
- •2) Принцип компенсации.
- •3) Принцип управления по отклонению (принцип обратной связи).Принцип Ползунова-Уатта.
- •Типовая функциональная схема сар.
- •4. Классификация сар.
- •5. Стабилизирующие сар.
- •6. Программные сар.
- •7. Следящие сар.
- •8. Следящие системы угла. Следящая сар на потенциометрах.
- •9. Следящая сар угла на сельсинах в индикаторном режиме.
- •10. Следящая сар угла на сельсинах в трансформаторном режиме
- •11. Математические модели сар. Линеаризация дифференциальных уравнений системы.
- •12. Стандартные формы записи дифференциальных уравнений.
- •13. Передаточная функция в операторной форме и в форме изображений Лапласа.
- •14. Частотная передаточная функция.
- •15. Частотные характеристики звеньев.
- •16. Временные характеристики звеньев.
- •1) Единичный ступенчатый сигнал.
- •23. Критерий устойчивости Гурвица.
- •24. Критерий устойчивости михайлова.
- •25. Критерий устойчивости Найквиста.
- •26. Построение областей устойчивости.
- •28. Показатели качества сар, определяемые по переходному процессу
- •2. Показатели запаса устойчивости
- •3. Показатели быстродействия
- •29. Частотные критерии качества сар.
- •30. Корневые методы оценки качества сар. Диаграмма Вышнеградского.
- •31. Интегральные оценки качества.
- •1) Простейшая интегральная оценка:
- •2) Квадратичная интегральная оценка:
- •3) Улучшенная интегральная оценка.
- •32. Точность сар в установившемся режиме.
- •3) Регулирование по производной от ошибки.
- •33. Статическое и астатическое регулирование. Статическая ошибка сар.
- •35.Повышение точности сар
- •3) Регулирование по производной от ошибки.
- •4) Использование комбинированного регулирования.
- •36. Повышение запасов устойчивости сар
- •1) Подавление высоких частот:
- •3) Подавление средних частот.
- •37. Законы регулирования.
- •2) Экспериментальный способ настройки
- •39. Коррекция сар. Корректирующие устройства.
- •1) Последовательные;
- •40. Построение желаемой лачх.
- •41. Подбор корректирующих звеньев с помощью лачх.
- •1) Метод фазового пространства(точный):
- •2) Метод моделирования:
- •3) Метод гармонической линеаризации:
- •4) Метод Попова для оценки устойчивости:
- •45. Импульсные сар.
- •46. Цифровые сар.
- •47. Анализ Качества импульсных и цифровых сар.
- •48. Адаптивные сау. Способы построения беспоисковых систем.
- •1)Одномерная система слепого поиска
- •2)Система детермированного поиска
- •3)Система случайного поиска
- •50. Системы с нечеткой логикой
26. Построение областей устойчивости.
Если требуется оценить изменение устойчивости системы при изменении любого параметра, строят график, который называется областями устойчивости (D –разбиение)
Для построения областей устойчивости, левую часть характеристического уравнения записывают в частотном виде. При этом исследуемый параметр записывается в виде переменной. Затем в полученном выражении выделяют действительную и мнимую части и выражают из него исследуемый параметр.
Изменения частоты от 0 до бесконечности, на комплексной плоскости строят график, который затем достраивают до отрицательных частот.
На график наносят штриховку с левой стороны при движении от – бескон к + бескон. Полностью заштрихованная область является областью устойчивости, т.е исследуемый параметр может изменить свое значение в пределах этой области. При достижении критического значения система выходит на границу устойчивости, иногда, графики имеют след. вид----------------------------
а) система устойчива при любом значении исследуемого параметра. Явление называется структурной устойчивостью. К ним относятся системы 1-го и 2-го порядка
б) система неустойчива при любом значении исследуемого параметра. Явление называется структурной неустойчивостью.
При построении областей устойчивости по 2-м параметрам, в качестве координатных осей используется значение параметров.
В
характеристическом уравнении назначают
2 решенных, выделяют действ и мним часть,
получают систему из 2-х уравнений.
Уравнение решают относительно T и K, получая любое из них в виде функции частоты. Изменяя частоту (0, беск), строят график (рис в). Наносят штриховку при движении от 0 до беск, справа или слева, в зависимости от знака определителя.
27. влияние параметров системы на устойчивость.
Различают запас устойчивости по амплитуде и запас устойчивости по фазе.
по амплитуде: показывает, на сколько можно изменить коэффициент передачи разомкнутого контура до выхода замкнутой системы на границу устойчивости.
по фазе: характеризует максимальное увеличение отрицательного фазового сдвига до её выхода на границу устойчивости
На устойчивость влияют такие параметры:
1)коэффициент передачи;
2) увеличение постоянной времени одного из звеньев;
3)повышение порядка астатизма.
1)повышение коэффициента передачи выше критического приводит к неустойчивости системы. Критический коэффициент рассчитывается по критерию Гурвица.
2)если увеличивать постоянную времени одного из звеньев системы, то это приведёт к увеличению отрицательного фазового сдвига. При этом точки АФЧХ будут поворачиваться по часовой стрелке и приближаться к точке (-1, j0).следовательно запасы устойчивости будут снижаться и при некотором критическом значении постоянной времени произойдёт потеря устойчивости системы.
Введении в систему звена с запаздыванием тоже влияет на устойчивость системы. Точки АФЧХ будут поворачиваться почасовой стрелке на угол τw, где τ-время запаздывания.
