
- •Введение § 1. Понятие о фотограмметрии
- •§ 2. Основные виды и методы фототопографических съемок
- •§ 3. Краткий исторический очерк развития и современное состояние фотограмметрии
- •Глава 1. Основы аэрофотосъемки § 4. Общие понятия об аэрофотосъемке
- •§ 5. Фотографический объектив
- •§ 6. Характеристики фотографического объектива
- •§ 7. Светочувствительные слои и их основные показатели
- •§ 8. Аэрофотоаппарат
- •§ 9. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •§ 10. Основные технические требования к топографической аэрофотосъемке
- •§ 11. Специальное аэросъемочное оборудование
- •§ 12. Аэрофотосъемочные работы
- •Глава 2. Геометрические основы фотограмметрии § 13. Понятие о центральной проекции
- •§ 14. Элементы центральной проекции
- •§ 15. Перспектива точки и прямой предметной плоскости
- •§ 16. Теорема Шаля. Эпюры
- •§ 17. Перспектива отвесной прямой
- •§ 18. Перспектива сетки квадратов
- •Глава 3. Теория одиночного снимка § 19. Системы координат в фотограмметрии
- •§ 20. Элементы ориентирования аэроснимка
- •§ 21. Преобразования координатных систем
- •§ 22. Определение направляющих косинусов
- •§ 23. Зависимость между координатами соответственных точек снимка и местности
- •§ 24. Зависимость между координатами точек наклонного и горизонтального снимков
- •§ 25. Масштаб изображения на аэроснимке
- •§ 26. Линейные искажения, вызванные влиянием угла наклона аэроснимка
- •§ 27. Линейные искажения, вызванные влиянием рельефа местности
- •§ 28. Искажение изображения площади
- •§ 29. Физические источники искажения изображения
- •§ 30. Определение элементов внешнего ориентирования снимка
- •Глава 4. Трансформирование снимков § 31. Понятие о трансформировании
- •§ 32. Аналитическое трансформирование
- •§ 33. Понятие о фотомеханическом трансформировании
- •§ 34. Оптические и геометрические условия фототрансформирования
- •§ 34.1. Оптические условия фототрансформирования
- •§ 34.2. Геометрические условия фототрансформирования
- •§ 35. Элементы трансформирования
- •§ 36. Фототрансформаторы
- •§ 37. Трансформирование снимков на фототрансформаторе
- •§ 37.1. Трансформирование снимков по установочным данным
- •§ 37.2. Трансформирование снимков по опорным точкам
- •§ 38. Учет рельефа при фототрансформировании
- •Глава 5. Фотосхемы и фотопланы § 39. Понятие о фотопланах и фотосхемах
- •§ 40. Изготовление фотосхем
- •§ 41. Изготовление фотопланов
- •§ 42. Контроль фотопланов и фотосхем
- •Глава 6. Дешифрирование снимков § 43. Понятие о дешифрировании
- •§ 44. Дешифровочные признаки
- •§ 45. Содержание и точность дешифрирования
- •Глава 7. Способы наблюдения и измерения стереомодели § 46. Глаз – оптическая и физиологическая система
- •§ 47. Монокулярное и бинокулярное зрение
- •§ 48. Стереоскопическое зрение
- •§ 49. Способы стереоскопических наблюдений
- •§ 50. Способы измерения снимков и стереомодели
- •§ 51. Стереокомпараторы
- •§ 52. Точность измерений
- •Глава 8. Теория пары аэроснимков. Построение одиночной модели § 53. Модель местности и пространственная фотограмметрическая засечка
- •§ 54. Элементы взаимного ориентирования пары аэроснимков
- •§ 55. Уравнение взаимного ориентирования
- •§ 56. Определение элементов взаимного ориентирования
- •§ 57. Прямая фотограмметрическая засечка
- •§ 58. Передача элементов внешнего ориентирования снимка
- •§ 59. Построение фотограмметрической модели
- •§ 60. Внешнее (геодезическое) ориентирование модели
- •§ 61. Деформация фотограмметрической модели
- •Глава 9. Универсальные стереофотограмметрические приборы § 62. Понятие об универсальных приборах
- •§ 63. Особенности обработки снимков с преобразованными связками проектирующих лучей
- •§ 64. Аналоговые фотограмметрические приборы
- •§ 65. Аналитические фотограмметрические приборы
- •§ 66. Обработка снимков на универсальных фотограмметрических приборах
- •§ 66.1. Обработка снимков на аналоговых приборах
- •§ 66.2. Обработка снимков на аналитических приборах
- •§ 67. Дифференциальное трансформирование
- •Глава 10. Пространственная фототриангуляция § 68. Сущность пространственной фототриангуляции
- •§ 69. Классификация методов фототриангуляции
- •§ 70. Внутреннее ориентирование снимков
- •§ 71. Способ полузависимых моделей
- •§ 72. Способ независимых моделей
- •§ 73. Уравнивание связок проектирующих лучей
- •§ 74. Другие способы аналитического построения сетей фототриангуляции
- •§ 75. Точность фототриангуляционных сетей
- •§ 76. Требования к густоте опорных точек
- •§ 77. Программы построения и уравнивания сетей пространственной фототриангуляции
- •Глава 11. Методы цифровой фотограмметрии § 78. Понятие о цифровом изображении
- •§ 79. Характеристики цифрового изображения
- •§ 80. Фотометрические и геометрические преобразования цифровых снимков
- •§ 81. Источники цифровых изображений
- •§ 82. Стереоскопические наблюдения и измерения цифровых изображений
- •§ 83. Автоматическая идентификация точек цифровых снимков (коррелятор)
- •§ 84. Фотограмметрическая обработка цифровых снимков
- •§ 84.1. Внутреннее ориентирование снимков
- •§ 84.2. Выбор точек и построение фотограмметрических моделей
- •§ 84.3. Построение и уравнивание фототриангуляционной сети
- •§ 85. Цифровая модель рельефа и ее построение
- •§ 85.1. Способы представления цифровой модели рельефа
- •§ 85.2. Фотограмметрическая технология построения цифровой модели рельефа
- •§ 86. Ортотрансформирование снимков
- •§ 87. Современные цифровые фотограмметрические системы и их основные характеристики
- •Глава 12. Материалы фотограмметрической обработки в специальных исследованиях и геоинформационных системах § 88. Виды фотограмметрической продукции и их характеристика
- •§ 89. Решение задач по нетрансформированному снимку
- •§ 90. Использование нетрансформированных снимков в качестве топографической основы гис
- •Литература
§ 87. Современные цифровые фотограмметрические системы и их основные характеристики
Применение цифровых методов фотограмметрии в практике топографических, кадастровых и других съемок, как и картографического обеспечения геоинформационных и кадастровых систем, стало реальностью сегодняшнего дня. И нет никаких сомнений в том, что вытеснение классических аналоговых методов обработки материалов аэрофотосъемки – задача уже ближайшего будущего. Это обстоятельство и послужило основанием для того, чтобы в действующих инструкциях по фотограмметрическим работам были обозначены как основные задачи, решаемые цифровыми методами, так и критерии их эффективности.
Требования к цифровым фотограмметрическим системам (ЦФС) делятся на общие, технические и технологические.
Общие требования к ЦФС включают такие условия, как строгость алгоритма, максимальная автоматизация процессов обработки, гарантированное решение задачи при наличии теоретической возможности, использование всей геометрической точности исходных изображений, насыщенность алгоритмов логическими операциями контроля полноты и корректности данных, авторская поддержка программных средств и др.
Технические требования определяют главные условия функционирования цифровых систем и в частности – возможность обработки черно-белых и цветных снимков в сжатых и несжатых форматах, отсутствие ограничений на объем памяти и быстродействие ПЭВМ, реализация оптических и электронных средств стереоизмерений и ряд других.
Технологические требования к цифровым системам определяют перечень функциональных возможностей систем, наличие которых обеспечивает их эффективную эксплуатацию, в частности:
автоматическое распознавание и измерение изображений координатных меток и выполнение внутреннего ориентирования;
автоматическое стереоотождествление и измерение идентичных опорных и фотограмметрических точек перекрывающихся снимков;
автоматическое построение по стереопарам цифровых моделей рельефа;
ортотрансформирование изображений с использованием информации о рельефе, представленной в виде горизонталей, отдельных точек (пикетов), регулярной или нерегулярной ЦМР, формирование выходного ортоизображения с заданным геометрическим разрешением и автоматическое выравнивание его плотности;
внутреннее, взаимное и внешнее ориентирование снимков и моделей (маршрутов) по произвольному числу исходных точек (меток, крестов);
сбор цифровой информации об объектах местности в процессе стерео- и моно векторизации (по эпиполярным снимка м и ортоизображению соответственно) с использованием настраиваемого классификатора, ее редактирование с использованием автоматизированных процедур и представление результатов в распространенных форматах.
В настоящее время имеется достаточно большое число цифровых фотограмметрических систем, из которых наибольшее распространение в специализированных предприятиях Республики Беларусь получили системы Photomod , ТАЛКА, и RealisticMap.
ЦФС Photomod разработана ОАО «Ракурс» в содружестве с ведущими специалистами России. Система создана в 1993 г. и ныне используется более чем в 40 странах мира (в том числе около 40 инсталляций в предприятиях и организациях республики), а также в ведущих учебных заведениях России и Республики Беларусь.
Photomod – полнофункциональная система с богатейшими возможностями и оригинальным графическим интерфейсом. Используемые системой математические модели позволяют обрабатывать не только наземные и воздушные снимки, полученные по законам центрального проектирования, но и сканерные, радиолокационные изображения, а также снимки, полученные неметрическими камерами. Это одна из немногих фотограмметрических систем на рынке СНГ, позволяющая обрабатывать космические и иные цифровые сканерные изображения, полученные с помощью различных сенсоров.
К достоинствам системы относится замкнутый технологический цикл получения всех видов конечной продукции: ЦМР, 3D-векторов, ортофотопланов и цифровых карт без использования других программных продуктов.
ЦФС Photomod имеет гибкую модульную структуру, обеспечивающую оптимальное соответствие конфигурации задачам пользователя, функционирует в локальной сети и может эксплуатироваться совместно с другими фотограмметрическими системами. Структура системы и основные функции ее компонентов показаны на рис. 11.19.
Широкое распространение и профессиональное признание системы обеспечили ее богатейшие технологические возможности, основные из которых сводятся к следующему:
оригинальная графическая среда и доступный интерфейс;
возможность обработки сканерных спутниковых изображений, включая снимки SPOT, TERRA, EROS, LANDSAT, IRS, ASTER, ICONOS, QuickBird;
наличие интерфейса, обеспечивающего эксплуатацию системы в среде ГИС «Карта 2000» (ГИС «Панорама»), MicroStation/95/SE/J (модуль StereoLink), экспорта данных в геоинформационные и картографические системы и др.;
в
озможность использования при построении и уравнивании фотограмметрических измерений полного набора систем координат, картографических проекций и данных GPS-измерений;
наличие эффективных средств калибровки планшетных полиграфических сканеров;
наличие настраиваемого классификатора картографических объектов;
применение графических и статистических методов оценки достоверности данных и диагностики ошибок измерений;
возможность формирования ЦМР на регулярной сетке (DEM) с переменным разрешением и использования ее при ортотрансформировании;
наличие эффективных средств оцифровки в монокулярном и стереоскопическом режимах и редактирования полученной графической (векторной) информации;
Система постоянно совершенствуется (в год появляется 2–3 новых версии), пополняется новыми инструментальными средствами и технологическими возможностями.
ЦФС ТАЛКА разработана ИПУ РАН под руководством доктора физико-математических наук Д. В. Тюкавкина. Она отвечает производственным требованиям, технологична и изначально хорошо приспособлена для работы с большими объемами данных. К особенности системы можно отнести:
использование «сжатых» изображений, состоящих из точных фрагментов («фотоабрисов») с изображениями точек и пространств между ними с 10-кратным прореживанием;
возможность обработки больших изображений объемом до 4 Гб;
полную автоматизацию стереоизмерений, включая нанесение необходимых точек с использованием четырех режимов отождествления: «грубого» (аффинного), «стандартного» (с обычной корреляцией), «быстрого» (с малой областью поиска) и «надежного» (с поконтурной обработкой);
построение маршрутных сетей по перекрывающимся триплетам, их объединение в блок в свободной системе координат с последующим уточнением, ориентирование блока маршрутов по опорным точкам и уравнивание связок проектирующих лучей;
возможность выполнения значительного работ (до 95% от общего объема) в свободной системе координат;
ортотрансформирование снимков по фрагментам (максимум 128128), полученным делением рабочей площади на заданное число элементов в зависимости от уклона местности;
возможность выполнения фотометрической коррекции изображения путем локального выравнивания яркостей между фрагментами, глобального выравнивания всего изображения и межпиксельного выравнивание плотности.
К недостаткам системы можно отнести скромные графические возможности при векторизации, отсутствие классификатора объектов (что важно при последующем создании оригинала карты или плана) и невозможность построения и измерения анаглифических изображений исходных снимков.
ЦФС RealisticMap разработана ОАО «Пеленг» и НПП «Медиаскан» (Минск) под руководством Н. И. Киркорова и применяется в военно-топографических службах МО Украины, Республики Беларусь, а также в некоторых предприятиях республики. К особенностям системы можно отнести:
сочетание с аналитическими фотограмметрическими приборами SD2000, SD3000, Стереоанаграф;
создание ЦМР по результатам полуавтоматической векторизации структурных линий, горизонталей и подписанных на карте отметок;
построение фототриангуляционного блока путем объединения независимых моделей;
импорт уравненных координат точек фототриангуляционной сети;
экспорт 3D-векторов с атрибутами в формате DXF из других систем;
расчет и формирование карт уклонов и профилей по заданным направлениям.
Система технологична, легко вписывается в производственный процесс, обеспечивает получение высококачественных ортофотопланов. Хорошо проработана фотометрическая коррекция. К недостаткам системы можно отнести полное отсутствие средств автоматизации стереоизмерений и наличие жестких требований к ПЭВМ ( Pentium III, RAM 128 Мб, HDD 40 Гб, монитор с частотой кадров 120–160 Гц, видеокарта ASUS AGPV7700).
Среди других ЦФС следует отметить системы корпорации Intergraph, LH-System, (рабочие станции DWP 770) и SOCET SET, IMAGINE OrthoBase фирмы ERDAS, ЦФС ЦНИИГАиК, Цифровой стереоплоттер SDS (Новосибирск) и др.