
- •Введение § 1. Понятие о фотограмметрии
- •§ 2. Основные виды и методы фототопографических съемок
- •§ 3. Краткий исторический очерк развития и современное состояние фотограмметрии
- •Глава 1. Основы аэрофотосъемки § 4. Общие понятия об аэрофотосъемке
- •§ 5. Фотографический объектив
- •§ 6. Характеристики фотографического объектива
- •§ 7. Светочувствительные слои и их основные показатели
- •§ 8. Аэрофотоаппарат
- •§ 9. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •§ 10. Основные технические требования к топографической аэрофотосъемке
- •§ 11. Специальное аэросъемочное оборудование
- •§ 12. Аэрофотосъемочные работы
- •Глава 2. Геометрические основы фотограмметрии § 13. Понятие о центральной проекции
- •§ 14. Элементы центральной проекции
- •§ 15. Перспектива точки и прямой предметной плоскости
- •§ 16. Теорема Шаля. Эпюры
- •§ 17. Перспектива отвесной прямой
- •§ 18. Перспектива сетки квадратов
- •Глава 3. Теория одиночного снимка § 19. Системы координат в фотограмметрии
- •§ 20. Элементы ориентирования аэроснимка
- •§ 21. Преобразования координатных систем
- •§ 22. Определение направляющих косинусов
- •§ 23. Зависимость между координатами соответственных точек снимка и местности
- •§ 24. Зависимость между координатами точек наклонного и горизонтального снимков
- •§ 25. Масштаб изображения на аэроснимке
- •§ 26. Линейные искажения, вызванные влиянием угла наклона аэроснимка
- •§ 27. Линейные искажения, вызванные влиянием рельефа местности
- •§ 28. Искажение изображения площади
- •§ 29. Физические источники искажения изображения
- •§ 30. Определение элементов внешнего ориентирования снимка
- •Глава 4. Трансформирование снимков § 31. Понятие о трансформировании
- •§ 32. Аналитическое трансформирование
- •§ 33. Понятие о фотомеханическом трансформировании
- •§ 34. Оптические и геометрические условия фототрансформирования
- •§ 34.1. Оптические условия фототрансформирования
- •§ 34.2. Геометрические условия фототрансформирования
- •§ 35. Элементы трансформирования
- •§ 36. Фототрансформаторы
- •§ 37. Трансформирование снимков на фототрансформаторе
- •§ 37.1. Трансформирование снимков по установочным данным
- •§ 37.2. Трансформирование снимков по опорным точкам
- •§ 38. Учет рельефа при фототрансформировании
- •Глава 5. Фотосхемы и фотопланы § 39. Понятие о фотопланах и фотосхемах
- •§ 40. Изготовление фотосхем
- •§ 41. Изготовление фотопланов
- •§ 42. Контроль фотопланов и фотосхем
- •Глава 6. Дешифрирование снимков § 43. Понятие о дешифрировании
- •§ 44. Дешифровочные признаки
- •§ 45. Содержание и точность дешифрирования
- •Глава 7. Способы наблюдения и измерения стереомодели § 46. Глаз – оптическая и физиологическая система
- •§ 47. Монокулярное и бинокулярное зрение
- •§ 48. Стереоскопическое зрение
- •§ 49. Способы стереоскопических наблюдений
- •§ 50. Способы измерения снимков и стереомодели
- •§ 51. Стереокомпараторы
- •§ 52. Точность измерений
- •Глава 8. Теория пары аэроснимков. Построение одиночной модели § 53. Модель местности и пространственная фотограмметрическая засечка
- •§ 54. Элементы взаимного ориентирования пары аэроснимков
- •§ 55. Уравнение взаимного ориентирования
- •§ 56. Определение элементов взаимного ориентирования
- •§ 57. Прямая фотограмметрическая засечка
- •§ 58. Передача элементов внешнего ориентирования снимка
- •§ 59. Построение фотограмметрической модели
- •§ 60. Внешнее (геодезическое) ориентирование модели
- •§ 61. Деформация фотограмметрической модели
- •Глава 9. Универсальные стереофотограмметрические приборы § 62. Понятие об универсальных приборах
- •§ 63. Особенности обработки снимков с преобразованными связками проектирующих лучей
- •§ 64. Аналоговые фотограмметрические приборы
- •§ 65. Аналитические фотограмметрические приборы
- •§ 66. Обработка снимков на универсальных фотограмметрических приборах
- •§ 66.1. Обработка снимков на аналоговых приборах
- •§ 66.2. Обработка снимков на аналитических приборах
- •§ 67. Дифференциальное трансформирование
- •Глава 10. Пространственная фототриангуляция § 68. Сущность пространственной фототриангуляции
- •§ 69. Классификация методов фототриангуляции
- •§ 70. Внутреннее ориентирование снимков
- •§ 71. Способ полузависимых моделей
- •§ 72. Способ независимых моделей
- •§ 73. Уравнивание связок проектирующих лучей
- •§ 74. Другие способы аналитического построения сетей фототриангуляции
- •§ 75. Точность фототриангуляционных сетей
- •§ 76. Требования к густоте опорных точек
- •§ 77. Программы построения и уравнивания сетей пространственной фототриангуляции
- •Глава 11. Методы цифровой фотограмметрии § 78. Понятие о цифровом изображении
- •§ 79. Характеристики цифрового изображения
- •§ 80. Фотометрические и геометрические преобразования цифровых снимков
- •§ 81. Источники цифровых изображений
- •§ 82. Стереоскопические наблюдения и измерения цифровых изображений
- •§ 83. Автоматическая идентификация точек цифровых снимков (коррелятор)
- •§ 84. Фотограмметрическая обработка цифровых снимков
- •§ 84.1. Внутреннее ориентирование снимков
- •§ 84.2. Выбор точек и построение фотограмметрических моделей
- •§ 84.3. Построение и уравнивание фототриангуляционной сети
- •§ 85. Цифровая модель рельефа и ее построение
- •§ 85.1. Способы представления цифровой модели рельефа
- •§ 85.2. Фотограмметрическая технология построения цифровой модели рельефа
- •§ 86. Ортотрансформирование снимков
- •§ 87. Современные цифровые фотограмметрические системы и их основные характеристики
- •Глава 12. Материалы фотограмметрической обработки в специальных исследованиях и геоинформационных системах § 88. Виды фотограмметрической продукции и их характеристика
- •§ 89. Решение задач по нетрансформированному снимку
- •§ 90. Использование нетрансформированных снимков в качестве топографической основы гис
- •Литература
§ 85.2. Фотограмметрическая технология построения цифровой модели рельефа
Фотограмметрические методы цифрового моделирования рельефа основаны на использовании полиномов, нерегулярной сети треугольников TIN и регулярной сети DEM. Причем непосредственно по аэроснимкам модель рельефа строится на сети треугольников, а для ортотрансформирования, проведения горизонталей, стереовекторизации и других операций она преобразуется в регулярную модель DEM. Обязательным условием создания ЦМР является наличие элементов взаимного и внешнего ориентирования снимков, получаемых в процессе предварительного построения фототриангуляционной сети.
Некоторое представление о размере сторон нерегулярной сети треугольников TIN и шаге регулярной сети DEM могут дать следующие данные, имеющиеся в специальной литературе: для правильного отображения рельефа на плане масштаба 1:2000 путем линейной интерполяции между точками с известными высотами необходимо, чтобы среднее расстояния между ними были не менее:
20 м – для плоскоравнинной местности со слабой расчлененностью;
10 м – для волнообразной поверхности с гладкими формами;
5 м – для сильно расчлененной местности с большим числом оврагов и промоин.
Современные цифровые фотограмметрические системы реализуют несколько стратегий моделирования рельефа в границах выбираемых пользователем локальных зон, каждая из которых предполагает создание нерегулярной сети треугольников TIN на основе критерия Делоне. В одних случаях это может быть «гладкая» модель (по терминологии, принятой в ЦФС Photomod) с использованием полиномиальной функции вида (11.13); в других – сеть треугольников, построенных по предварительно оцифрованным по стереоизображению векторным объектам (линиям тальвегов, водоразделов, береговых линий, бровкам оврагов и иным элементам, точки которых определены в плане и по высоте); в третьих – «адаптивная» или «регулярная» модель по точкам, размещенных в узлах некоторой сетки с заданным шагом и т.д.
С точки зрения фотограмметрии наибольший интерес представляет адаптивная и регулярная модели рельефа, построение которых требует автоматического отождествления точек с помощью коррелятора. Технология построения таких моделей может включать, например, следующие основные операции:
1. Определение границ области моделирования (глобальной области).
2. Определение границ подобластей моделирования (локальных областей), различающихся характером рельефа местности и возможностями применения того или иного метода построения ЦМР (§ 85.1).
3. Построение регулярной сети со сторонами, параллельными осям X и Y координатной системы местности и с шагом, зависящим от характера рельефа местности.
4. Присвоение всем узлам регулярной сетки высот, равных отметке средней плоскости снимка, и вычисление их координат xл, yл на левом снимке стереопары по формулам (3.16) связи координат точек наклонного снимка и местности.
5. Идентификация узлов сети треугольников с помощью коррелятора (§ 83), определение их координат xп, yп на правом снимке и вычисление пространственных координат X, Y, Z точек по формулам (8.20 – 8.21) прямой фотограмметрической засечки.
6. Построение сети неперекрывающихся треугольников с вершинами в узлах регулярной сетки (модели TIN) на основе алгоритма Делоне.
Операции 3–6 выполняются в автоматическом режиме, без участия оператора.
Если в пределах области моделирования выбрано несколько локальных зон, объединяющих участки с различными формами рельефа, то для последующей их увязки в границах глобальной зоны и объединения в единую модель рельефа обрабатываемой территории, зоны должны перекрываться между собой, или, по крайней мере, между ними не должно быть разрывов.
При построении цифровой модели положение узлов регулярной сетки и совпадающих с ними вершин сети треугольников намечается автоматически, без учета характера местности. В связи с этим намечаемые точки могут оказаться на крышах домов, на крутых склонах, на водной поверхности и т. д., что предопределяет необходимость корректировки построенной сети треугольников путем изменения положения ее вершин в процессе стереоскопических наблюдений эпиполярных изображений (§ 53). Последние создаются путем трансформирования левого и правого снимков на плоскость SXY базисной координатной системы с использованием формул (3.21) связи координат точек наклонного и горизонтального снимков. Направляющие косинусы, необходимые для преобразования координат, находят по формулам (3.8) с заменой углов , , элементами взаимного ориентирования 1, =0, 1 при трансформировании левого изображения и элементами 2, 2, 2 при трансформировании правого изображения. Особенностью таких изображений является отсутствие на них поперечных параллаксов, что создает несомненные удобства для ее наблюдений и измерений и повышает надежность работы коррелятора.
Современные средства построения ЦМР по цифровым изображениям обладают достаточно мощными технологическими средствами ее визуального и статистического контроля. Средствами такого контроля являются: преобразование элементов сети треугольников в пространственные объекты c последующим их вращением и визуальной оценкой «выбросов»; расчет уклонов с их анализом; статистический анализ экстремальных значений высот точек; оценка точности моделирования по уклонениям высот контрольных точек от аппроксимирующей поверхности. В качестве контрольных точек используются опорные, связующие и другие точки, включенные в фотограмметрическую сеть.
Построение цифровой модели завершается увязкой локальных моделей TIN по их границам и формированием общей модели в границах обработки, созданием регулярной модели DEM, интерполированием горизонталей с заданным шагом и редактированием их положения по эпиполярным изображениям.
Ниже будет показано, что цифровую модель рельефа DEM удобнее строить с шагом, соответствующим или (чаще всего) кратным геометрическому разрешению аэроснимка.