- •Введение § 1. Понятие о фотограмметрии
- •§ 2. Основные виды и методы фототопографических съемок
- •§ 3. Краткий исторический очерк развития и современное состояние фотограмметрии
- •Глава 1. Основы аэрофотосъемки § 4. Общие понятия об аэрофотосъемке
- •§ 5. Фотографический объектив
- •§ 6. Характеристики фотографического объектива
- •§ 7. Светочувствительные слои и их основные показатели
- •§ 8. Аэрофотоаппарат
- •§ 9. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •§ 10. Основные технические требования к топографической аэрофотосъемке
- •§ 11. Специальное аэросъемочное оборудование
- •§ 12. Аэрофотосъемочные работы
- •Глава 2. Геометрические основы фотограмметрии § 13. Понятие о центральной проекции
- •§ 14. Элементы центральной проекции
- •§ 15. Перспектива точки и прямой предметной плоскости
- •§ 16. Теорема Шаля. Эпюры
- •§ 17. Перспектива отвесной прямой
- •§ 18. Перспектива сетки квадратов
- •Глава 3. Теория одиночного снимка § 19. Системы координат в фотограмметрии
- •§ 20. Элементы ориентирования аэроснимка
- •§ 21. Преобразования координатных систем
- •§ 22. Определение направляющих косинусов
- •§ 23. Зависимость между координатами соответственных точек снимка и местности
- •§ 24. Зависимость между координатами точек наклонного и горизонтального снимков
- •§ 25. Масштаб изображения на аэроснимке
- •§ 26. Линейные искажения, вызванные влиянием угла наклона аэроснимка
- •§ 27. Линейные искажения, вызванные влиянием рельефа местности
- •§ 28. Искажение изображения площади
- •§ 29. Физические источники искажения изображения
- •§ 30. Определение элементов внешнего ориентирования снимка
- •Глава 4. Трансформирование снимков § 31. Понятие о трансформировании
- •§ 32. Аналитическое трансформирование
- •§ 33. Понятие о фотомеханическом трансформировании
- •§ 34. Оптические и геометрические условия фототрансформирования
- •§ 34.1. Оптические условия фототрансформирования
- •§ 34.2. Геометрические условия фототрансформирования
- •§ 35. Элементы трансформирования
- •§ 36. Фототрансформаторы
- •§ 37. Трансформирование снимков на фототрансформаторе
- •§ 37.1. Трансформирование снимков по установочным данным
- •§ 37.2. Трансформирование снимков по опорным точкам
- •§ 38. Учет рельефа при фототрансформировании
- •Глава 5. Фотосхемы и фотопланы § 39. Понятие о фотопланах и фотосхемах
- •§ 40. Изготовление фотосхем
- •§ 41. Изготовление фотопланов
- •§ 42. Контроль фотопланов и фотосхем
- •Глава 6. Дешифрирование снимков § 43. Понятие о дешифрировании
- •§ 44. Дешифровочные признаки
- •§ 45. Содержание и точность дешифрирования
- •Глава 7. Способы наблюдения и измерения стереомодели § 46. Глаз – оптическая и физиологическая система
- •§ 47. Монокулярное и бинокулярное зрение
- •§ 48. Стереоскопическое зрение
- •§ 49. Способы стереоскопических наблюдений
- •§ 50. Способы измерения снимков и стереомодели
- •§ 51. Стереокомпараторы
- •§ 52. Точность измерений
- •Глава 8. Теория пары аэроснимков. Построение одиночной модели § 53. Модель местности и пространственная фотограмметрическая засечка
- •§ 54. Элементы взаимного ориентирования пары аэроснимков
- •§ 55. Уравнение взаимного ориентирования
- •§ 56. Определение элементов взаимного ориентирования
- •§ 57. Прямая фотограмметрическая засечка
- •§ 58. Передача элементов внешнего ориентирования снимка
- •§ 59. Построение фотограмметрической модели
- •§ 60. Внешнее (геодезическое) ориентирование модели
- •§ 61. Деформация фотограмметрической модели
- •Глава 9. Универсальные стереофотограмметрические приборы § 62. Понятие об универсальных приборах
- •§ 63. Особенности обработки снимков с преобразованными связками проектирующих лучей
- •§ 64. Аналоговые фотограмметрические приборы
- •§ 65. Аналитические фотограмметрические приборы
- •§ 66. Обработка снимков на универсальных фотограмметрических приборах
- •§ 66.1. Обработка снимков на аналоговых приборах
- •§ 66.2. Обработка снимков на аналитических приборах
- •§ 67. Дифференциальное трансформирование
- •Глава 10. Пространственная фототриангуляция § 68. Сущность пространственной фототриангуляции
- •§ 69. Классификация методов фототриангуляции
- •§ 70. Внутреннее ориентирование снимков
- •§ 71. Способ полузависимых моделей
- •§ 72. Способ независимых моделей
- •§ 73. Уравнивание связок проектирующих лучей
- •§ 74. Другие способы аналитического построения сетей фототриангуляции
- •§ 75. Точность фототриангуляционных сетей
- •§ 76. Требования к густоте опорных точек
- •§ 77. Программы построения и уравнивания сетей пространственной фототриангуляции
- •Глава 11. Методы цифровой фотограмметрии § 78. Понятие о цифровом изображении
- •§ 79. Характеристики цифрового изображения
- •§ 80. Фотометрические и геометрические преобразования цифровых снимков
- •§ 81. Источники цифровых изображений
- •§ 82. Стереоскопические наблюдения и измерения цифровых изображений
- •§ 83. Автоматическая идентификация точек цифровых снимков (коррелятор)
- •§ 84. Фотограмметрическая обработка цифровых снимков
- •§ 84.1. Внутреннее ориентирование снимков
- •§ 84.2. Выбор точек и построение фотограмметрических моделей
- •§ 84.3. Построение и уравнивание фототриангуляционной сети
- •§ 85. Цифровая модель рельефа и ее построение
- •§ 85.1. Способы представления цифровой модели рельефа
- •§ 85.2. Фотограмметрическая технология построения цифровой модели рельефа
- •§ 86. Ортотрансформирование снимков
- •§ 87. Современные цифровые фотограмметрические системы и их основные характеристики
- •Глава 12. Материалы фотограмметрической обработки в специальных исследованиях и геоинформационных системах § 88. Виды фотограмметрической продукции и их характеристика
- •§ 89. Решение задач по нетрансформированному снимку
- •§ 90. Использование нетрансформированных снимков в качестве топографической основы гис
- •Литература
§ 42. Контроль фотопланов и фотосхем
Работы по изготовлению фотосхем и фотопланов завершаются их контролем, выполняемым с помощью обрезков снимков.
Контроль фотоплана выполняют по трем показателям: по точкам, по порезам и по сводкам со смежными фотопланами. Результаты контроля отражаются в корректурном листе, на который схематически наносят рамку листа, координатную сетку, линии порезов, трансформационные точки, точки по сводкам, линиям порезов, и выполненные контрольные измерения (рис. 5.4).
К
онтроль
по точкам
заключается в оценке величин и
направлений уклонений центров
пробитых пуансоном отверстий от
соответствующих точек основы.
Направление, в котором центр пробитого
пуансоном отверстия смещен
относительно точки основы, показывают
стрелкой и рядом записывают величину
этого уклонения, оценивая ее визуально,
ориентируясь по диаметру
пробитого пуансоном отверстия.
В соответствии с действующими инструкциями величины уклонений точек не должны превышать 0,5 мм в равнинных и всхолмленных районах и 0,7 мм в горных.
Контроль по порезам выполняют с помощью обрезков снимков, полученных при монтаже фотоплана. Обрезок снимка прикладывают к линии пореза так, чтобы он являлся продолжением снимка, от которого он отрезан, и совмещают изображенные на нем контуры с их продолжениями на фотоплане. Через каждые 2–3 см делают наколы четких контурных точек, после чего, убрав обрезок, выполняют оценку уклонений соответствующих точек фотоплана от следов наколов с помощью палетки с миллиметровыми делениями. Величина уклонения, в соответствии с требованиями нормативных документов, не должна превышать 0,7 мм, а в горных районах, при коэффициенте трансформирования более 1,5 и при трансформировании по зонам – 1,0 мм.
Контроль по сводкам со смежными фотопланами выполняют по обрезкам, полученным при обрезке смежного фотоплана по соответствующей рамке. Обрезки совмещают с линиями координатной сетки контролируемого фотоплана и через 2–3 см делают наколы четких контурных точек. Величины уклонений соответствующих точек контролируемого фотоплана от следов наколов измеряют с помощью палетки и заносят в корректурный лист. Допустимыми считаются уклонения, не превышающие 1,0 мм в равнинных, всхолмленных районах и 1,5 мм в горных.
Контроль фотосхем выполняют только по линиям порезов. Оформляемый при этом корректурный лист не отличается от корректурного листа фотоплана (рис. 5.4), но содержит только схематические линии порезов снимков, положение контрольных точек и величины расхождений их положения.
При контроле одномаршрутных фотосхем, изготовленных способом индивидуальной обрезки (§ 40), в процессе контроля выявляют наличие дублетов и вырезов по взаимному положению накалываемой точки, следа накола и линии пореза.
Глава 6. Дешифрирование снимков § 43. Понятие о дешифрировании
Все элементы местности при одинаковой их освещенности обладают различной спектральной отражательной способностью, благодаря чему их изображения на аэрофотоснимках различаются по фототону, структуре рисунка и др. Кроме того, на снимках в известной степени сохраняется подобие и соотношение размеров объектов, неизменность их взаимного расположения и т. п. Фотоизображение местности, таким образом, обладает ценными изобразительными свойствами, выделяющими данный объект среди других.
Распознавание по фотоизображению объектов местности, необходимых для составления плана или других целей, и выявление их содержания с обозначением в условных знаках качественных и количественных характеристик называется дешифрированием.
Возможность распознавания изображения объекта определяется наличием граничных линий со смежными объектами, тоновой и цветовой контраст которых лежит в пределах зрительного восприятия. Увеличение такого контраста является обязательным условием аэрофотографирования.
В общем комплексе работ по созданию топографической основы дешифрирование занимает важное место и является весьма ответственным и трудоемким процессом. От точности определения по фотоизображению положения объектов местности, достоверности и полноты их характеристик в значительной степени зависит и качество изготавливаемого плана.
В зависимости от назначения дешифрирование подразделяют на топографическое и специальное, причем к последнему относят распознавание объектов по их фотоизображениям в интересах сельского хозяйства, геологии, гидрологии и т. п. Универсальность материалов аэрофотосъемки позволяет в каждом случае дешифрирования выявлять те особенности и детали местности, которые требуются для решения соответствующих научных, инженерных, хозяйственных и иных задач.
При топографическом дешифрировании выявляют и показывают условными знаками все элементы местности, необходимые для создания топографической карты в заданном масштабе: населенные пункты и отдельные постройки; закрепленные на местности опорные геодезические пункты; гидрографическую и дорожную сети, линии связи с характеризующими их данными и относящимися к ним сооружениями; естественный и культурный растительный покров и грунты; рельеф местности и др.
При специальном дешифрировании, выполняемом в интересах соответствующих служб (землеустроительной, архитектурно-градостроительной, лесной и др.), выявляют в первую очередь интересующие их объекты местности – административно-территориальные или хозяйственные границы, породы леса и др. с характеризующими их данными. При этом другие элементы местности – пути сообщения, элементы гидрографии, леса, болота и т. п. дешифрируют с обобщением и сокращением их характеристик в части, не имеющей непосредственного отношения к соответствующей службе.
В зависимости от техники исполнения дешифрирование делят на камеральное, полевое, комбинированное и аэровизуальное.
Камеральное дешифрирование основано на использовании изобразительных свойств фотоснимков и изучении различных вспомогательных материалов. В ряде случаев (в военном деле, при изучении небесных тел и др.) камеральное дешифрирование является единственно возможным.
Полевое дешифрирование, выполняемое непосредственно на местности, носит сезонный характер. Оно основано на сличении фотоизображения с натурой, чем и обеспечивается требуемая полнота, точность и достоверность результатов на момент дешифрирования.
Комбинированное дешифрирование сочетает достоинства и недостатки полевого и камерального дешифрирования. Как правило, в зимний период выполняют камеральное дешифрирование, а в летний – полевую проверку и уточнение полученных зимой результатов.
Аэровизуальное дешифрирование производят непосредственно с борта летательного аппарата (самолета, вертолета) и применяют для ускорения процесса дешифрирования больших однородных массивов с малым числом контуров – лесов, болот, тундры и др.
