- •Введение § 1. Понятие о фотограмметрии
- •§ 2. Основные виды и методы фототопографических съемок
- •§ 3. Краткий исторический очерк развития и современное состояние фотограмметрии
- •Глава 1. Основы аэрофотосъемки § 4. Общие понятия об аэрофотосъемке
- •§ 5. Фотографический объектив
- •§ 6. Характеристики фотографического объектива
- •§ 7. Светочувствительные слои и их основные показатели
- •§ 8. Аэрофотоаппарат
- •§ 9. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •§ 10. Основные технические требования к топографической аэрофотосъемке
- •§ 11. Специальное аэросъемочное оборудование
- •§ 12. Аэрофотосъемочные работы
- •Глава 2. Геометрические основы фотограмметрии § 13. Понятие о центральной проекции
- •§ 14. Элементы центральной проекции
- •§ 15. Перспектива точки и прямой предметной плоскости
- •§ 16. Теорема Шаля. Эпюры
- •§ 17. Перспектива отвесной прямой
- •§ 18. Перспектива сетки квадратов
- •Глава 3. Теория одиночного снимка § 19. Системы координат в фотограмметрии
- •§ 20. Элементы ориентирования аэроснимка
- •§ 21. Преобразования координатных систем
- •§ 22. Определение направляющих косинусов
- •§ 23. Зависимость между координатами соответственных точек снимка и местности
- •§ 24. Зависимость между координатами точек наклонного и горизонтального снимков
- •§ 25. Масштаб изображения на аэроснимке
- •§ 26. Линейные искажения, вызванные влиянием угла наклона аэроснимка
- •§ 27. Линейные искажения, вызванные влиянием рельефа местности
- •§ 28. Искажение изображения площади
- •§ 29. Физические источники искажения изображения
- •§ 30. Определение элементов внешнего ориентирования снимка
- •Глава 4. Трансформирование снимков § 31. Понятие о трансформировании
- •§ 32. Аналитическое трансформирование
- •§ 33. Понятие о фотомеханическом трансформировании
- •§ 34. Оптические и геометрические условия фототрансформирования
- •§ 34.1. Оптические условия фототрансформирования
- •§ 34.2. Геометрические условия фототрансформирования
- •§ 35. Элементы трансформирования
- •§ 36. Фототрансформаторы
- •§ 37. Трансформирование снимков на фототрансформаторе
- •§ 37.1. Трансформирование снимков по установочным данным
- •§ 37.2. Трансформирование снимков по опорным точкам
- •§ 38. Учет рельефа при фототрансформировании
- •Глава 5. Фотосхемы и фотопланы § 39. Понятие о фотопланах и фотосхемах
- •§ 40. Изготовление фотосхем
- •§ 41. Изготовление фотопланов
- •§ 42. Контроль фотопланов и фотосхем
- •Глава 6. Дешифрирование снимков § 43. Понятие о дешифрировании
- •§ 44. Дешифровочные признаки
- •§ 45. Содержание и точность дешифрирования
- •Глава 7. Способы наблюдения и измерения стереомодели § 46. Глаз – оптическая и физиологическая система
- •§ 47. Монокулярное и бинокулярное зрение
- •§ 48. Стереоскопическое зрение
- •§ 49. Способы стереоскопических наблюдений
- •§ 50. Способы измерения снимков и стереомодели
- •§ 51. Стереокомпараторы
- •§ 52. Точность измерений
- •Глава 8. Теория пары аэроснимков. Построение одиночной модели § 53. Модель местности и пространственная фотограмметрическая засечка
- •§ 54. Элементы взаимного ориентирования пары аэроснимков
- •§ 55. Уравнение взаимного ориентирования
- •§ 56. Определение элементов взаимного ориентирования
- •§ 57. Прямая фотограмметрическая засечка
- •§ 58. Передача элементов внешнего ориентирования снимка
- •§ 59. Построение фотограмметрической модели
- •§ 60. Внешнее (геодезическое) ориентирование модели
- •§ 61. Деформация фотограмметрической модели
- •Глава 9. Универсальные стереофотограмметрические приборы § 62. Понятие об универсальных приборах
- •§ 63. Особенности обработки снимков с преобразованными связками проектирующих лучей
- •§ 64. Аналоговые фотограмметрические приборы
- •§ 65. Аналитические фотограмметрические приборы
- •§ 66. Обработка снимков на универсальных фотограмметрических приборах
- •§ 66.1. Обработка снимков на аналоговых приборах
- •§ 66.2. Обработка снимков на аналитических приборах
- •§ 67. Дифференциальное трансформирование
- •Глава 10. Пространственная фототриангуляция § 68. Сущность пространственной фототриангуляции
- •§ 69. Классификация методов фототриангуляции
- •§ 70. Внутреннее ориентирование снимков
- •§ 71. Способ полузависимых моделей
- •§ 72. Способ независимых моделей
- •§ 73. Уравнивание связок проектирующих лучей
- •§ 74. Другие способы аналитического построения сетей фототриангуляции
- •§ 75. Точность фототриангуляционных сетей
- •§ 76. Требования к густоте опорных точек
- •§ 77. Программы построения и уравнивания сетей пространственной фототриангуляции
- •Глава 11. Методы цифровой фотограмметрии § 78. Понятие о цифровом изображении
- •§ 79. Характеристики цифрового изображения
- •§ 80. Фотометрические и геометрические преобразования цифровых снимков
- •§ 81. Источники цифровых изображений
- •§ 82. Стереоскопические наблюдения и измерения цифровых изображений
- •§ 83. Автоматическая идентификация точек цифровых снимков (коррелятор)
- •§ 84. Фотограмметрическая обработка цифровых снимков
- •§ 84.1. Внутреннее ориентирование снимков
- •§ 84.2. Выбор точек и построение фотограмметрических моделей
- •§ 84.3. Построение и уравнивание фототриангуляционной сети
- •§ 85. Цифровая модель рельефа и ее построение
- •§ 85.1. Способы представления цифровой модели рельефа
- •§ 85.2. Фотограмметрическая технология построения цифровой модели рельефа
- •§ 86. Ортотрансформирование снимков
- •§ 87. Современные цифровые фотограмметрические системы и их основные характеристики
- •Глава 12. Материалы фотограмметрической обработки в специальных исследованиях и геоинформационных системах § 88. Виды фотограмметрической продукции и их характеристика
- •§ 89. Решение задач по нетрансформированному снимку
- •§ 90. Использование нетрансформированных снимков в качестве топографической основы гис
- •Литература
§ 10. Основные технические требования к топографической аэрофотосъемке
При топографической аэрофотосъемке должен быть выполнен ряд требований, соблюдение которых обеспечивает последующую фотограмметрическую обработку аэрофотоснимков. Контроль за соблюдением этих требований производится как в процессе аэрофотосъемки, так и по ее завершению, при оценке качества полученных материалов.
В
ысота
фотографирования
– это расстояние, измеряемое по
отвесной линии от узловой точки
объектива установленного на самолете
аэрофотоаппарата до некоторой
поверхности. В зависимости от выбора
этой поверхности различают (рис. 1.9):
абсолютную высоту фотографирования
H0
над уровнем моря (плоскость A),
относительную
высоту фотографирования Ha
над аэродромом
(B),
высоту фотографирования H
над средней плоскостью съемочного
участка (C),
истинную высоту фотографирования
Hi
над какой-либо точкой местности (E).
Высота фотографирования над средней плоскостью съемочного участка определяется в период предполетной подготовки в зависимости от параметров аэрофотосъемки (f, m) и масштаба создаваемого плана (M):
(1.10)
где коэффициент увеличения снимка
. (1.11)
При аэрофотосъемке равнинных районов реальная высота фотографирования может отличаться от расчетной не более чем на 3 % .
П
ерекрытия
аэроснимков, выражаемые в процентах
от размера аэронегатива, обеспечивают
возможность фотограмметрической
обработки аэроснимков, и требование
их соответствия расчетным
является одним из основных.
Продольное перекрытие Px (рис. 1.10, а) должно быть в среднем 60% при минимальном 56%, что обеспечивает наличие 12-процентной зоны тройного продольного перекрытия. В некоторых случаях (например, при съемке населенных пунктов с многоэтажной застройкой) продольное перекрытие может устанавливаться равным 8090% (±5%). Это позволяет обрабатывать маршруты, в которых снимки взяты через один (Px =80 %) или через два (Px =90 %).
Зона продольного перекрытия определяет границы стереопары, в пределах которой выполняется фотограмметрическая обработка изображений. Зону тройного продольного перекрытия используют для связи смежных стереопар по общим точкам и передачи от одной из них к другой системе координат и масштаба фотограмметрических построений.
Поперечное перекрытие Py (рис. 1.10, б) должно быть не менее 20% при среднем 3035% и используется для размещения в нем опорных точек и точек связи смежных маршрутов. Иногда оно устанавливается равным 60%, что позволяет формировать и обрабатывать маршруты через один с целью повышения точности измерений и сокращения объема полевых работ.
Наличие продольного и поперечного перекрытий обусловливает целесообразность практического использования не всей площади аэроснимка, а только его центральной части. К тому же величины искажения положения точек под влиянием факторов физического и геометрического характера в центральной части снимка заметно меньше, чем по краям. Эта часть аэроснимка, ограниченная средними линиями продольного и поперечного перекрытий, называется рабочей площадью. В ее границах выполняется дешифрирование снимка и любые измерительные действия; из этих площадей создаются фотопланы, ортофотопланы и т. п.
Прямолинейность маршрутов характеризуется отношением стрелки прогиба l (максимального удаления центра какого-либо снимка маршрута от линии, соединяющей первый и последний снимки) к длине маршрута L. Прямолинейность подсчитывается в процентах, а ее величина не должна превышать двух – трех процентов.
Непараллельность стороны аэроснимка (базиса фотографирования) направлению полета затрудняет фотограмметрическую обработку снимков и не должна превышать 5–10 (в зависимости от фокусного расстояния съемочной камеры и высоты фотографирования).
Угол наклона аэроснимков оказывают влияние на фотограмметрические работы только при использовании приборов аналогового типа. Тем не менее, действующие нормативные документы, регламентирующие аэрофотосъемочные работы, устанавливают критерии ее оценки и по величине угла наклона, которая не должна превышать 10 при аэрофотосъемке с использованием средств стабилизации аэрофотоаппарата (см. § 11) и 3 без них. Причем число снимков с максимальным углом наклона не должно превышать 10 % от их общего числа.
Ряд требований регламентирует метеорологические условия съемки, определяющие фотографическое качество снимков.
В частности, аэрофотосъемка должна выполняться при безоблачном небе, поскольку на снимках недопустимо изображение ни самих облаков, ни отбрасываемой ими тени. Отрицательное влияние на фотографическое качество оказывает также туман, дымка, избыточная влажность воздуха и пр. Все это меняет отражательную способность аэроландшафта, делает границы между объектами плохо различимыми и т. п. Нежелательно выполнять аэрофотосъемку ранней весной, поздней осенью, после распускания деревьями листвы, и совершенно недопустимо зимой, при наличии снежного покрова. Считается, что аэрофотосъемочный сезон начинается через две недели после весеннего снеготаяния и завершается с наступлением периода систематических осенних дождей.
Аэрофотосъемка выполняется в ранние утренние часы, при высоте Солнца над горизонтом не более 20–25, когда сквозь отбрасываемые объектами тени можно узнать закрываемые ими элементы местности.
