
- •1).Классификация коррозионных процессов.
- •2) Определение явления.
- •2.1)Термодинамика химической коррозии металлов
- •Адсорбция окислителя на металле
- •Образование продуктов коррозии
- •Классификация по толщине пленок на металлах
- •2.2.2) Условие сплошности пленок на металлах.
- •2.3) Влияние внешних и внутренних факторов на химическую коррозию металлов.
- •2.3.1) Температура.
- •2.3.2) Состав газовой фазы.
- •2.3.3, 2.3.5) Скорость движения газовой фазы.
- •2.3.4, 2.3.7, 2.3.8) Состав сплава.
- •2.3.6) Режим нагрева металла.
- •2.3.9) Деформация металла
- •3.3) Коррозионные процессы с кислородной деполяризацией.
- •3.4) .Защита металлических материалов от коррозии в нейтральных
- •3.5) Коррозионные процессы с водородной деполяризацией.
- •3.6) Пассивность металлов.
- •3.7, 3.7.2)Внутренние и внешние факторы электрохимической коррозии
- •Состояние поверхности металла
- •Термодинамическая устойчивость металла
- •Кристаллографический фактор
- •Гетерогенность сплавов и величина зерна
- •Механический фактор
- •ВНешние факторы электрохимической коррозии
- •Влияние температуры на электрохимическую коррозию
- •Рн раствора
- •Влияние скорости движения раствора на скорость электрохимической коррозии
- •3.4.2.4) Кавитационное воздействие
- •4)Виды коррозии металлов
- •Влияние различных факторов на почвенную коррозию влияние влажности грунта на почвенную коррозию металла.
- •Пористость (воздухопроницаемость) грунта
- •Кислотность грунта.
- •Электропроводность грунта.
- •Минералогический состав и неоднородность грунта.
- •Влияние микроорганизмов на почвенную коррозию металлов.
- •Механизм и особенности почвенной коррозии металлов
- •Особенности почвенной коррозии металлов:
- •Методы защиты от почвенной коррозии
- •Нанесение защитных покрытий. Изоляция
- •Создание искусственной атмосферы
- •Электрохимическая защита металла от почвенной коррозии
- •Специальные методы укладки
Электропроводность грунта.
Электропроводность грунта зависит от его минералогического состава, количества влаги и солей в почве. Каждый вид грунта имеет свое определенное значение электропроводности, оно может колебаться от нескольких единиц до нескольких сотен Ом на метр. Соленость грунта оказывает огромное влияние на его электропроводность. С увеличением содержания солей легче протекают анодный и катодный электродные процессы, что снижает электросопротивление. Почти всегда определив электропроводность грунта можно судить о его степени коррозионной агрессивности (для стали, чугуна). Исключение составляют водонасыщенные почвы.
Минералогический состав и неоднородность грунта.
Минералогический состав и неоднородность грунта оказывают большое влияние (как и влажность) на омическое сопротивление. В глинисто-песчаном влажном грунте удельное сопротивление почвы составляет около 900 Ом•см, а в таком же грунте, только сухом – 240000 Ом•см. С уменьшением удельного сопротивления грунта его агрессивность увеличивается.
Минерализация почвы может колебаться в пределах 10 – 300 мг/л.
Неоднородность грунта приводит к возникновению гальванопар, которые только усиливают почвенную коррозию, делают разрушение неравномерным.
Влияние температуры грунта на почвенную коррозию металлов. Температура может колебаться в очень больших пределах. Зимой, когда свободная вода, заполняющая капилляры в почве замерзает - скорость почвенной коррозии немного уменьшается. Это также связано с плохой аэрацией поверхности металла. В летнее время, когда на улице стоит жара, скорость почвенной коррозии может замедлятся также, что объясняется высыханием почвы. Самый большой ущерб почвенная коррозия наносит в межсезонье, когда грунт достаточно влажный, созданы оптимальные условия для протекания коррозионного процесса. Температура грунта зависит от времени года, географической широты, времени суток, погоды.
Значительное различие температур на конструкции, имеющей большую протяженность (подземный трубопровод) может быть причиной образования термогальванических коррозионных пар, которые обеспечивают усиление местной почвенной коррозии.
Влияние микроорганизмов на почвенную коррозию металлов.
В почве живут и развиваются два вида микроорганизмов: аэробные (могут существовать только при наличии кислорода), анаэробные (для обеспечения их жизнедеятельности кислород не требуется). Они оказывают огромное влияние на почвенную коррозию металлов. Почвенная коррозия металлических сооружений, вызванная жизнедеятельностью живых микроорганизмов носит название биологическая (биокоррозия) либо биохимическая.
Аэробные микроорганизмы (почвенные) существуют двух видов: одни принимают непосредственное участие в осаждении железа, другие – окисляют серу. Оптимальными условиями для существования анаэробных серобактерий является кислая среда (3 – 6 рН). Серобактерии окисляют сероводород в серу, а потом - серную кислоту по следующим уравнениям:
2H2S + O2 = 2H2O + S2;
S2 + 2H2O + 3O2 = 2H2SO4.
В местах наибольшего количества серобактерий концентрация серной кислоты может достигать 10%. Это очень сильно ускоряет почвенную коррозию, особенно стали.
При рН грунта около 4 – 10 развиваются бактерии, перерабатывающие железо. Эти бактерии в процессе своей жизнедеятельности поглощают ионы железа, а выделяют нерастворимые соединения, содержащие Fe. В местах скопления железобактерий наблюдается большое количество нерастворимых железистых соединений, которые увеличивают гетерогенность поверхности. Это явление также оказывает большое влияние на скорость почвенной коррозии.
Анаэробные микроорганизмы могут вырабатывать углеводороды, сероводород, угольную кислоту и множество других химических соединений. Они могут разрушать защитные покрытия, воздействовать на ход анодной и катодной реакции, менять характеристики почвы.
Среди анаэробных микроорганизмов самыми опасными можно считать сульфатредуцирующие бактерии. Оптимальные условия для их существования, почва со значением рН 5,5 – 8 (болотные, глинистые, илистые грунты). Бактерии восстанавливают сульфаты, содержащиеся в почве. Этот процесс можно описать следующим уравнением:
MgSO4 + 4H = Mg(OH)2 + H2S + O2.
Выделившийся кислород обеспечивает протекание реакции на катоде. Сероводород и сульфиды в почве являются причиной появления на поверхности эксплуатируемой конструкции рыхлого слоя сульфида железа.
Коррозия носит питтинговый характер.