
- •2. Титан и сплавы на его основе
- •6. Основные типы кристаллических решёток, их дефекты.
- •7 Сталь качественная конструкционная
- •8. Кристаллизация Ме. Зародыши. Слиток.
- •9.Диаграммы металлов с полиморфными превращениями
- •10 Цементируемые и улучшаемые легированные
- •11. Методы опред техн-х св-в Ме. Техн пробы
- •13. Механич. Испытания.
- •17. Структура и свойства композиционных материалов на полимерной матрице.
- •18. Физические свойства материалов и методы их оценки.
- •19. Термомеханическая и механотермическая обработка сталей. Патентирование металла, технология, примеры применения
- •20 Алюминий, технология его получения и области прим
- •21.Классификация металл-х сплавов.
- •22 Закалка и отпуск
- •23. Макроизломы.
- •24.Триботехнические св-ва металлов. Примеры анти-, фрикционных материалов, применяемых на транспорте
- •26. Диаграмма 1 типа. Правило отрезков.
- •27 Легированные стали классифицируют:
- •28. Влияние легирующих эл-тов на чугун.
- •29. Магний, своство сплавов, применение.
- •30. Диаграмма 2 типа. Правило отрезков.
- •32. Коррозионно-стойкие стали.
- •33.Анализ диаграммы сплавов, образующих неустойчивые хим. Соединения
- •34.Разновидности отжига и примеры применения его на транспорте
- •35. Диаграмма 4 типа. Правило отрезков.
- •36 Основн способы закалки сталей Превращ аустенита
- •38. Диаграмма 3 типа. Правило отрезков.
- •47 Классификация припоев
- •1. Классификация
- •48. Серый чугун. Антифрикционные сч
- •51. Классификация легированных чугунов, структура
- •52.Класификация и маркировка алюмин деформир
- •55. Опред-е твердости ме. Методы безобраз. Испытания
- •56. Технология производства меди, маркировка
- •57 Химическое модифицирование высокоэнергетическими методами.
- •58.Медно-никелевые сплавы, маркировка и области применения.
- •59.Различные виды цементации стали, технология, св-ва и применение
- •60 Классификация бронз. Маркировка и область применения
- •65.Технология производства чугуна (продукты доменного процесса).
- •70.Азотирование и нитроцементация.
- •76 Классификация и маркировка сталей.
- •78.Анализ основных видов отпуска стали. Структурно-фазовые превращения
- •81 Кремнийорганические пластмассы
- •83.Классификация конструкционных материалов и металлов. Их св-ва и примеры
17. Структура и свойства композиционных материалов на полимерной матрице.
Композиционные материалы (композиты) – многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Композиционные материалы, имеющие полимерную непрерывную фазу, являющуюся матрицей, и одну или несколько дисперсных фаз, называются полимерными композитами. Свойства полимерных композитов в значительной мере определяются свойствами полимерной матрицы. Дисперсная фаза, которая может быть твердой, жидкой и газообразной, также оказывает очень большое влияние на свойства полимерных композиционных материалов. Созданием полимерных композитов можно повысить прочность, жесткость, теплостойкость, ударную вязкость, масло-, бензостойкость, улучшить технологичность, снизить плотность, изменить другие свойства базового полимера. Это основной способ создания полимерных материалов с заданными свойствами. По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Волокнистые композиты армированы волокнами или нитевидными кристаллами – кирпичи с соломой и папье-маше можно отнести как раз к этому классу композитов. В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок. Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20–25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов – нового класса композиционных материалов – еще меньше и составляют 10–100 нм.
18. Физические свойства материалов и методы их оценки.
Физические свойства металлов. К физическим свойствам метал-лов относят плотность, температуру плавления, теплопроводность, теп-ловое расширение, теплоемкость, электропроводность, магнитные свой-ства.
Цветом называют способность металла отражать падающие на него световые лучи; например, медь красноватого цвета, алюминий – серебри-сто-белого. Плотность характеризуется массой, заключенной в единице объема. Температура плавления – температура перехода из твердого со-стояния в жидкое. Температура плавления железа 1539°С, олова – 232°С, меди – 1083°С. Теплопроводность – способность металлов по-глощать тепло и отдавать его при охлаждении. Лучшей теплопроводно-стью обладают серебро, медь, алюминий. Теплопроводность учитывается в теплотехнических расчетах. Тепловое расширение – способность металла расширяться при нагревании и сжиматься при охлаждении. Это свойст-во учитывают при строительстве мостовых ферм, железнодорожных путей, при изготовлении подшипников скольжения. Теплоемкостью на-зывают способность металла при нагревании поглощать определенное количество теплоты. Электропроводность – способность металла про-водить электрический ток. Для токонесущих проводов используют медь и алюминий с высокой электропроводностью, а в электронагревательных приборах и печах применяют сплавы с высоким электросопротивлением (нихром, константан, манганин).
Магнитными свойствами, т. е. способностью намагничиваться, обла-дают железо, никель, кобальт и их сплавы; их называют ферромагнит-ными. Они имеют огромное промышленное значение: используются в электродвигателях, генераторах, трансформаторах, телефонной, теле-графной технике и т. д. Иногда необходимы немагнитные материалы. Их получают, изменяя состав и внутреннее строение сплавов.